
www.manaraa.com

AN INVESTIGATION OF THE IMPACT OF AUTOMATED SOFTWARE TESTING TOOLS

ON REFLECTIVE THINKING AND STUDENT PERFORMANCE IN INTRODUCTORY

COMPUTER SCIENCE PROGRAMMING ASSIGNMENTS

by

Evorell Lawton Fridge

M.A., Louisiana State University, 2003

B.G.S., University of Louisiana - Lafayette, 2001

A dissertation submitted to the Department of Research and Advanced Studies

College of Professional Studies
The University of West Florida

In partial fulfillment of the requirements for the degree of
Doctor of Education

2014

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3636215
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3636215

www.manaraa.com

© 2014 Evorell Lawton Fridge

www.manaraa.com

The dissertation of Evorell Lawton Fridge is approved:

 __ ________________________
 Thomas J. Kramer, Ph.D., Committee Member Date

 __ ________________________
 John W. Coffey, Ed.D., Committee Member Date

 __ ________________________
 Sikha S. Bagui, Ed.D., Committee Chair Date

Accepted for the Department/Division:

 __ ________________________
 Patricia C. Wentz, Ph.D., Chair Date

Accepted for the University:

 __ ________________________
 Richard S. Podemski, Ph.D., Dean, Graduate School Date

www.manaraa.com

iv

ACKNOWLEDGMENTS

Thank you to Dr. Bagui for agreeing to work with me on this long dissertation process,

and for continuing to honor that commitment even when the circumstances of life would have

made it easy for you to bow out. Your strength and work ethic are very inspiring. Thank you to

Dr. Coffey for all the advice and encouragement, and to Dr. Kramer for providing valuable

feedback and serving on this committee even after retirement.

To my family, I appreciate all the sacrifices you’ve made to help me finish what I started.

I would like to thank my father for inspiring me to pursue my doctorate. I also want to thank my

wife for her never-ending patience and encouragement throughout this process. To my sons: you

can achieve anything you set your mind to.

www.manaraa.com

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABSTRACT ... ix

CHAPTER I. INTRODUCTION ...1

A. Background to the Study ...2
B. Statement of the Problem ..4
C. Statement of Purpose ..5
D. Research Questions ...5
E. Significance of the Study ..6
F. Key Terms ...7
G. Organization of this Dissertation ..8

CHAPTER II. LITERATURE REVIEW ..9

A. Theoretical Basis ...9
B. Reflection ..10
C. Automated Grading in Computer Science Education24
D. Software Testing ...28
E. Reflection in Computer Science Education ..31
F. Chapter Summary ...33

CHAPTER III. METHOD ..34

A. Research Questions and Hypotheses ..34
B. Research Setting ..37
C. Participants ..37
D. Instrumentation ...38
E. Procedures ...40
F. Statistical Analysis ..45
G. Chapter Summary ...46

CHAPTER IV. RESULTS ..47

A. Methodology Summary ..47
B. Participants and Demographics ...47
C. Results ...52
D. Chapter Summary ...58

CHAPTER V. DISCUSSION ..60

A. Discussion of Results ..60
B. Implications of the Study ..68

www.manaraa.com

vi

C. Limitations of the Study..70
D. Recommendations for Further Research ...72
E. Conclusion ..74

REFERENCES ..75

APPENDICES ...81

A. Institutional Review Board Approval Letters ..82
B. Informed Consent Form ..86
C. Demographic Survey ..88
D. Reflective Thinking Survey ..90
E. Sample Introductory Training Script ..93
F. Web-CAT Setup Handout ...95

www.manaraa.com

vii

LIST OF TABLES

1. Sample Demographic Data ..48

2. Reflective Thinking Survey Individual Items ..49

3. Reliability of Survey of Reflective Thought ..50

4. Total usage of Web-CAT ...51

5. Usage of Web-CAT by Project ..51

6. Total usage of Web-CAT and Average Student Performance ...53

www.manaraa.com

viii

LIST OF FIGURES

1. Line graph showing self-reported levels of critical reflection by age and first time in a
computer science course ..55

2. Line graph showing self-reported levels of understanding by age and classification56

3. Line graph showing self-reported levels of critical reflection by major and

classification ..57

www.manaraa.com

ix

ABSTRACT

AN INVESTIGATION OF THE IMPACT OF AUTOMATED SOFTWARE TESTING TOOLS
ON REFLECTIVE THINKING AND STUDENT PERFORMANCE IN INTRODUCTORY

COMPUTER SCIENCE PROGRAMMING ASSIGNMENTS

Evorell Lawton Fridge

 This research examined the benefits of automated software testing on student

performance and levels of reflection. Edwards (2004) theorized that the increased grade

performance that he observed in students who used his Web Center for Automated Testing

(Web-CAT) software was the result of increased levels reflective thought in students, such as the

reflection-in-action described by Schön (1983). The participants in this study consisted of 144

students in introductory Java programming courses at the University of West Florida. Students

were invited to use the Web-CAT software-testing tool for three software projects in the middle

of a semester. Students were not required to write their own test cases. Instead, the testing tool

used researcher-supplied test cases to evaluate student code and provide immediate feedback to

the students. At the end of the semester, student self-reported levels of reflection were measured

using Kember et al.’s (2000) reflective thinking survey. Students who used the software were

grouped into three usage levels: none, low, and high. The only significant difference in the

levels of reflective thought among any of the usage categories was a lower level of reported

understanding for the high Web-CAT usage level. Average student project performance also

increased significantly for those in the high usage level. Students, instructors, and administrators

could benefit from the adoption of such automated testing software and may see improvements

in student performance even without student-written test cases. More research is needed,

however, to determine if student-written test cases would provide an increase in student

reflective thought.

www.manaraa.com

1

CHAPTER I

INTRODUCTION

Learning to write good computer code is a difficult task. Students can sit in a classroom

and learn what constitutes good programming practice, but this is a very different thing from

actual programming experience. This is why programming assignments are often used in

computer science, even in introductory programming courses. This distinction between the

theory of classroom work and the experiential learning that happens in programming

assignments is highlighted even more by the individual nature of the assignments. While in-

person classroom experiences encourage participation and discussion, instructors will often

assign programming tasks to students as solo work with strict warnings against collaboration. It

can be all too easy for a student in an introductory course to excel at theoretical assignments like

tests and quizzes and yet struggle through their programming assignments without asking for

assistance.

Many instructors have observed the tendency for students to use a “Brownian motion”

approach to programming that involves small random changes to code in the hopes that some

solution would eventually arise (Edwards, 2004; Reek, 1989; Spacco, 2006). This strategy is

named after the random way particles travel in a fluid. Students who take this approach make

adjustments to their program without a particular plan or direction, frantically hoping to get their

program to do something useful. They continue to hit the compile button and hope that whatever

they just did makes their code work. Another popular approach that novices take is “Big Bang”

coding (Edwards, 2003), which involves writing large amounts of computer code at one sitting

without any testing at all. This strategy is named after the scientific theory that the universe was

created in one sudden event. Students who use this method do not take an iterative approach to

www.manaraa.com

2

development, but rather write all their code out at once. They are often disappointed to learn that

their program does not work as expected when they finally run it, and it is then difficult for them

to pinpoint their problems.

Once a student’s assignment is finally completed he or she must submit it to their

instructor and wait to hear back about it. Depending on the size of a computer science class,

students may have to wait a week or two from the time an assignment is due until the time that

they receive feedback on their performance. A recent survey of computer science instructors

indicated that an average of 15 minutes was spent grading each assignment, usually with a

checklist or a set of predetermined test cases (Spacco, 2006). By the time an assignment is

returned, a student may have already been tested on the principles emphasized in the assignment

or the focus of the class might have shifted to another topic. It can be difficult for students to

integrate the feedback they have received and improve their knowledge of a subject when so

much time has passed.

Background to the Study

There is no substitute for sitting in front of a computer screen and working through a

problem. In this respect computer science has much in common with the art and performance-

oriented disciplines of architecture and design. In these more artistic schools of learning,

instructors often come alongside students and work with them one on one to discover

weaknesses in their technique and areas for improvement. These disciplines feature experiences

called practicums because, like programming assignments in computer science, they are

designed to give students a taste of real life practice in a controlled setting.

Schön (1987) observed the importance of reflection in these practicums when he

described the interaction between a teacher and his student in an architecture studio. The

www.manaraa.com

3

teacher’s guidance took the form of a “reflective conversation” (Schön, 1987, p. 56) with the

student’s problematic situation, moving things around on the sketchpad and continuing to try

new experiments until a workable solution was found. This dialogue allowed the instructor to

model a proper design process while also teaching the student how to think like a designer.

Schön (1983) coined the term reflection-in-action to describe this process of encountering a

problem, reflecting on possible causes and solutions while still engaged in the situation, and

conducting an experiment to test the possible solution for effectiveness. Schön (1983) has

credited the ability of certain talented professionals to think on their feet as a reason for their

success.

This kind of one-on-one interaction between a student and teacher certainly has the

potential to help students overcome problems that they facing, yet computer science educators

rarely have the time to sit down with each of their students to assist them with all of their

assignments. Edwards (2003) and Spacco (2006) have proposed the use of automated software-

testing systems and an increased emphasis on student-written test cases as a means of improving

student performance on programming assignments. Because these tests can show where their

program deviates from a specification, automated testing tools can provide feedback that is

similar to what the students would receive from instructors or clients.

Automated software-testing systems provide a certain measure of feedback to students by

reporting the results of a series of test cases immediately. They also provide a benefit to

instructors by automating the monotonous task of testing for validity so that the instructors may

instead focus on grading for quality. Several institutions have used versions of this sort of tool in

the past with some measure of success (Douce, Livingstone, & Orwell, 2005), but they have not

come anywhere close to universal adoption. Automated software-testing tools have been

www.manaraa.com

4

criticized in the past for encouraging students to “focus on output correctness” (Edwards, 2004,

p. 28) at the expense of proper design and testing. Additional challenges to widespread adoption

of these graders are the need to design programming assignments to work with automated

graders and the added overhead and expertise needed to run these systems (Spacco, 2006).

Recently, a new class of automated software-testing systems called meta-graders has

been developed to allow students to submit their own test cases for evaluation (Edwards, 2003;

Spacco, 2006). These tools are based on the test-driven development (TDD; Beck, 2003)

approach to coding. They allow students to write their own test cases and submit them along

with their computer program to a web-based program for analysis. The programs analyze the

student code and provide them with instantaneous feedback using the tests provided by the

student as well as a test suite written by the instructor. Edwards’ study (2004) indicated that

students who participated in test-driven design using his new meta-grader had an increase in

grade performance over those who used an earlier, more primitive automated software-testing

tool that simply reported a grade without any suggestions for improvement.

Statement of the Problem

Previous research into the effectiveness of TDD has shown that it contributes very little

on its own to improvements in programmer productivity or the quality of the software that he or

she produces (Kollanus, 2010). The use of TDD was, however, associated with an increased

level of time and thought spent on the development and testing of software (Huang & Holcombe,

2008; Marrero & Settle, 2005). Edwards (2004) associated the use of student test cases in

automated software testing with fostering an environment of on the spot experimentation that is

so closely associated with reflection-in-action. However, Edwards (2004) did not attempt to

measure whether or not an increase in reflection was actually occurring, nor did he attempt to

www.manaraa.com

5

link this measurement to student performance. Further research is needed to determine whether

or not an increase in reflective thought can be observed when automated software testing is

introduced, and whether or not this can be linked with any improvement in student performance.

Perhaps the environment of reflection theorized by Edwards (2004) has less to do with the actual

mechanics of TDD and more to do with the use of software tools that encourage testing and give

more immediate feedback than a compiler can alone.

Statement of Purpose

 The purpose of this study was to examine the effectiveness of an automated software-

testing environment on the average project grade performance of students in an introductory

computer science class. It also examined any influence that reflective thought may have on

student performance. It was hypothesized that students would have higher average project scores

and increased levels of reflective thought when using an automated software-testing

environment.

Research Questions

This study used six research questions to investigate the relationships between automated

software testing, reflection and student performance. The first three questions investigated the

central ideas of this study, while the remaining three investigated the influence that

demographics might have on any of these variables.

Research Question 1. How does the use of automated software testing influence levels

of reflective thought in students compared to students who do not use automated software

testing?

www.manaraa.com

6

Research Question 2. How does the use of automated software testing influence student

performance on introductory computer science programming compared to students who do not

use automated software testing?

Research Question 3. To what degree does reflective thought affect student performance

on programming assignments for those who use automated software testing compared to those

who do not?

Research Question 4. How does demographic data influence levels of reflective thought

in students both who use and who do not use automated software testing?

Research Question 5. How does demographic data influence student performance on

introductory computer science programming assignments?

Research Question 6. How does demographic data influence student usage of an

automated software-testing environment?

Significance of the Study

This study adds to the literature of computer science education by exploring the

relationship between reflection and automated software testing first theorized by Edwards

(2004). It explores the influence of such tools on student performance, but it deviates from

Edwards’ (2004) design by offering students researcher-provided tests instead of asking them to

write their own. It then examines the role that reflection might play in any observed

improvement in student performance.

An investigation into the effect of automated software testing on student performance and

levels of reflective thought will allow this technology to be judged by its ability to promote

student learning. This study will help administrators and faculty in computer science

departments decide whether it is worth the extra time and effort required to deploy and maintain

www.manaraa.com

7

automated testing software in their departments. Instructors could rely on their test cases to grade

student assignments against a given set of requirements and focus more of their time on

evaluating the student’s design and coding style. Students would get the added benefits of an

environment that provides instantaneous feedback and encourages a purposeful approach to

software development.

Key Terms

Critical Reflection. Critical reflection is a high level of reflection that can “cause us to

be critical of epistemic, social, or psychological presuppositions” (Mezirow, 1991, p. 108).

Critical reflection can result in a change of perspective or philosophy when approaching a

problem.

Experiential Learning. Experiential Learning is a theory of learning that emphasizes the

role that experience plays in the learning process. It is defined as “the process whereby

knowledge is created through the transformation of experience” (Kolb, 1984, p. 38).

Reflection (or Reflective Thought). Reflection is defined as “active, persistent, and

careful consideration of any belief or supposed form of knowledge in the light of the grounds

that support it” (Dewey, 1910, p. 6). Reflection is measured by an instrument of reflective

thought (Kember et al., 2000) containing four scales: habitual action, understanding, reflection,

and critical reflection.

Student Age. Student age is the self-reported age of the student at the time of the study.

Student Classification. Student classification is the self-reported classification of the

student at the time of the study (e.g., Freshman, Sophomore, Junior, Senior, Graduate Student).

Student Major. Student major is the self-reported major of the student at the time of the

study (e.g., computer science, math, electrical engineering, etc.)

www.manaraa.com

8

Student Performance. Student performance will be calculated as the average of three of

a student’s programming assignments (projects 3 through 5) for the semester.

Test-Driven Development. Test-driven development is an approach to software

development where test cases are written before any software is written (Beck, 2003). These test

cases are used as a means of design and verification of software.

Organization of this Dissertation

 This dissertation is separated into five chapters. The first chapter serves as an

introduction to the problem and research questions being investigated. The second chapter is a

review of the literature surrounding reflection and automated testing. The third chapter describes

the methods used in testing the hypotheses, while the fourth chapter presents the results obtained

through these methods and the statistical analysis of those results. The fifth chapter contains the

conclusions of the researcher and the implications of the results, along with the limitations of the

study and suggestions for further research.

www.manaraa.com

9

CHAPTER II

LITERATURE REVIEW

Introductory computer science classes typically use programming assignments in addition

to traditional classroom lectures. These assignments introduce opportunities for students to

apply what they have learned in a practical way. This experiential learning (Kolb, 1984)

approach to education is popular in areas where learning is measured not just by whether or not

the students understand the material, but whether they can also do the work asked of them. In

this respect, programming assignments have much in common with creative design processes

that are “learnable, coachable, but not teachable” (Schön, 1987, p. 157).

Theoretical Basis

In his theory of reflection-in-action, Schön (1983) described a way in which students

might actively engage with and learn from their interactive experiences. In a broader sense, this

type of purposeful thought is related to experiential learning (Dewey, 1938; Kolb, 1984), which

in turn is based on the constructivist approach to learning first introduced by Piaget (1928).

The theory of constructivism includes the formation and adaptation of cognitive

structures that are then tested and adapted as a person encounters different life experiences.

These cognitive structures are the viewpoint from which we observe our world and make sense

of what is happening around us. From a constructivist point of view, reflection-in-action is the

act of forming cognitive structures based on our past professional experience, then testing these

structures in practice. If a weakness is found in them, an on-the-spot experiment is then

conducted to come up with a new cognitive structure that allows us to better approach the

problem. As Schön (1987) has said, “in the constructivist view, our perceptions, appreciations,

and beliefs are rooted in worlds of our own making that we come to accept as reality” (p. 36).

www.manaraa.com

10

The first part of this chapter contains a review of the occurrence of reflection in learning

theories. There is also a discussion of Schön’s concept of reflection-in-action and the use of

reflection in an educational setting, as well as some examples of the application of these theories

in research. The second part of this chapter involves a review of the literature of automated

grading in the context of computer science education. It also contains a discussion of the

effectiveness of TDD and the importance of reflection in learning to program a computer.

Reflection

Since Schön (1983) first emphasized the role of reflection in professional practice in his

book The Reflective Practitioner, the topic of reflection has become one of interest for educators

in many professional disciplines (Hatton & Smith, 1995). Reflection is an integral part of the

learning process, so much of the interest in reflection hinges on its role in learning and the degree

to which it can enhance the learning process. In order to understand Schön’s theories of

reflective practice and reflection-in-action, it is first useful to explore the role that reflection has

played in educational research and learning theory.

Reflection in learning theory. Reflection upon experiences tends to improve our

understanding and ability to learn from them. For this reason, the topic of reflection seems to

occur most often in the literature of experiential education. Researchers like Dewey (1938),

Lewin (1946), and Kolb (1984) have all included the concept of reflection in their theories of

how learning occurs.

Dewey (1938) described a cycle of experiential learning in his book Experience and

Education. He described the process of “formation of purposes” as an observation, followed by

an application of knowledge and judgment upon a situation. These judgments can become the

observations that we see in successive cycles. Dewey (1938) contrasted the formation of a

www.manaraa.com

11

purpose with acting on an impulse, saying “the crucial educational problem is … postponement

of immediate action upon desire until observation and judgment have intervened” (p. 69).

Implicit in the phases of observation and the application of previous knowledge is the idea that

the learner will reflect on things that he or she has learned in the past and apply that knowledge

to future actions.

Dewey (1910) also discussed the concept of reflection at length in his work How We

Think, in which he defined reflection as “active, persistent, and careful consideration of any

belief or supposed form of knowledge in the light of the grounds that support it, and the further

conclusions to which it tends” (p. 6). He also spoke of two steps in every reflective operation. A

“state of perplexity, hesitation [and] doubt” is always accompanied by “an act of search or

investigation directed toward bringing to light further facts which serve to corroborate or nullify

the suggested belief” (Dewey, 1910, p. 9). These steps hint at the reflective cycles that would be

developed by future researchers like Lewin (1946), Kolb (1984) and Schön (1983).

Dewey (1910) spoke of reflection as a passive, logical activity. He said that “reflection is

turning a topic over in various aspects and in various lights,” and that the terms “weigh, ponder

[and] deliberate” are closely associated with this activity (p. 57). He also spoke of the

importance of consulting past experiences when deciding future actions. This pensive approach

to reflection is similar to that described by Boud, Keogh, and Walker (1985), in contrast with

Schön’s immediate reflection-in-action in the middle of an experience.

Lewin (1946) placed great emphasis on the integration of practical and theoretical

research, and his model of action research introduced the concept of the feedback loop to tie

together these two worlds. The loop starts with a concrete experience and then proceeds through

stages of observation and reflection, formation of abstract concepts, and finally testing those

www.manaraa.com

12

concepts in new situations (Lewin, 1946). Kolb (1984) has credited Lewin’s “continuous

process of goal-directed action” (pp. 21-22) as the inspiration for many of his ideas on

experiential learning.

Kolb’s (1984) work on learning styles also used a cyclical pattern. Kolb (1984)

identified four modes of experiential learning that can be viewed as a cycle representing the

learning process: concrete experience, reflective observation, abstract conceptualization, and

active experimentation. These dimensions can also be viewed as two scales of measurement

perpendicular to one another, similar to an X and Y-axis on a graph. Concrete experience

contrasts with abstract conceptualization, and reflective observation contrasts with active

experimentation. These dimensions form the basis of his Learning Style Inventory (LSI), which

provided a way to measure the learning strengths of individuals on this scale (Kolb, 1984).

The dimension of Kolb’s (1984) scale called reflective observation is of particular

importance to this study. The learner who is strong in this area best understands a concept when

given time alone to think about it apart from any other activity. Reflection alone, however, will

not have the desired impact on learning. Instead, Kolb said that “learners, if they are to be

effective need four different kinds of abilities” and that the learner “must continually choose

which set of learning abilities he or she will bring to bear in any specific learning situation”

(Kolb, 1984, p. 30). He also said “the combination of all four of the elementary learning forms

produces the highest level of learning” (Kolb, 1984, p. 66).

This integration of the four modes of learning from his LSI formed the basis for Kolb’s

(1984) experiential learning theory (p. 140). As learners become more adept at using each of the

learning styles, they begin to integrate these styles into a cohesive approach to learning. Kolb

(1984) identified three stages of this process: acquisition of basic learning abilities, specialization

www.manaraa.com

13

in a specific learning process, and finally an integration phase that brings “a holistic

developmental adaptive process … that is integrative in its structure” (p. 146). Kolb (1984)

remarked that it is the role of higher education to teach learners to integrate different learning

styles into a cohesive learning approach.

Kolb’s (1984) learning cycle has been criticized for being “polarized” (Mezirow, 1990, p.

6) and “too neat and perhaps over-simple” (Jarvis, 1987, p. 18). For example, Jarvis (1987)

proposed a scenario in which a person was considering abstract mathematical concepts and

reflecting upon them. Learning may occur in this situation without concrete experience or

experimentation occurring. Jarvis (1987) also pointed to Schön’s (1983) own theory of

reflection-in-action as an example of multiple steps of Kolb’s (1984) cycle happening

simultaneously. However, when Kolb’s (1984) comments about the effective learner switching

between different learning abilities are considered, it is evident that Kolb did not prescribe a rigid

application of all four stages of his learning cycle. Kolb’s (1984) mention of an educational

discipline’s tendency to lean towards certain combinations of learning styles also seems to

confirm that he thought learning style specialization was inevitable (pp. 85-86).

Though he was critical of Kolb’s (1984) model as being too simplistic, Kolb’s research

influenced Jarvis’ (1987) own model of adult learning considerably. Jarvis (1987) proposed an

expanded view of learning as a state machine with no less than nine different states inside of it.

Jarvis’ (1987) model, though complex, provides for many different approaches to learning. A

person’s learning experience is influenced by its situation and context, and can consist of a

combination of learning stages such as practice, evaluation, reflection, and memorization. The

result of this experience is either a person who has been reinforced but unchanged or a person

who has been changed and is now more experienced (Jarvis, 1987, pp. 24-35).

www.manaraa.com

14

Boud et al. (1985) described a reflective process that is also similar to Kolb’s (1984) in

that it has distinct stages of experience, reflection, and outcome. Their model differed, however,

in their attempt to further separate the act of reflection into its various components. It also

emphasized the role that emotions play in the reflective process, which is something that was

absent from many other learning models. The authors described reflection as an after-the-fact

activity “in which people recapture their experience, think about it, mull it over and evaluate it”

(Boud et al., 1985, p. 19). They suggested that reflection is a purposeful activity that can be

instrumental in learning from experience and that reflection should be explicitly promoted in

learning institutions.

Boud et al.’s (1985) process of reflection begins with the identification of an experience

to be learned from. This experience should be revisited and replayed “in the mind’s eye” (Boud

et al., 1985, p. 27) to observe what happened. The learners should pay attention to the feelings

that they had during this event, attempting to emphasize the good feelings while isolating the

negative ones so that they can think objectively about the action. They should then re-evaluate

the experience to see what can be learned from it and what actions can be changed.

Reflection and feedback. Each of these reflective theories and their cyclical patterns

carry with them the concept of feedback. In every case there is an expectation that information

from an action will reach the user in order for them to reflect on it. The concept of feedback is

very important to the psychological approach of behaviorism. One of the earliest and most

influential researchers to discuss feedback was Thorndike (1898/1998). He proposed the Law of

Effect, which stated that connections between a cause and an effect could be reinforced or

diminished based on the outcome of the action. This research was the inspiration for research in

operant conditioning such as the work of Skinner (1935).

www.manaraa.com

15

 More recent research into feedback has shown that there is not always a clear link

between improved feedback and student performance. In a study of the relationship between

feedback interventions and performance, Kluger and DeNisi (1996) defined feedback as “actions

taken by (an) external agent (s) to provide information regarding some aspect(s) of one's task

performance” (p. 255). Their review of previous feedback interventions showed that negative

effects were observed in over one-third of the studies. The studies they reviewed involved a

participant’s knowledge of the results of their effort, which is similar to the type of feedback

mentioned in reflective theories. Though feedback interventions have remained popular, the

authors mentioned that their variability could be due to many other factors, including the

attention a student is giving to the task at hand.

 There are also many types of feedback that an instructor can give a student. Wolsey

(2008) attempted to classify different types of feedback that were given to students in an online

writing class. He identified several different categories of written feedback that could be given

to a student, including simple and complex affirmation, editorial corrections, questions, and

personal comments. He observed that feedback has an interactive nature to it and was much

more than just “identifying errors and expecting students to make corrections” (Wolsey, 2008, p.

313).

Wolsey (2008) also distinguished between formative and summative feedback, and said

that students may have difficulty distinguishing between the two. Formative feedback is

feedback that is available to students before a final grade has been determined. It is corrective

and instructive without passing a final judgment, whereas summative feedback involves

evaluating the work at hand. Formative feedback tends to encourage a reflective approach to

www.manaraa.com

16

learning. Students are given information about their learning experience and are allowed to

correct and learn from their mistakes before proceeding to a final, graded work.

Reflective and non-reflective action. It is possible for an individual to perform a skilled

action without thinking about it. For example, a person riding a bicycle is doing something

subconsciously using a skill that took much practice to master, yet their mind is doing it without

any conscious thought. Schön (1983) spoke of the phenomenon of “knowing-in-action” by

skilled actors. He said, “although we sometimes think before acting, it is also true that in much

of the spontaneous behavior of skillful practice we reveal a kind of knowing which does not stem

from a prior intellectual operation” (Schön, 1983, p. 51).

Many researchers have made a distinction between doing an action without thinking

about it and consciously thinking about the action while we do it. Langer (1989) described states

of mindlessness and mindfulness that can each affect a person’s actions. She listed several

possible arguments for the causes of mindless activity such as repetition, context, and a belief in

limited resources or time. Langer (1989) also described ways that people can be more mindful

of their actions, such as changes in perspective, context, or a focus on the process of an action

instead of its outcome. Mezirow (1991) referred to this concept as “reflection as mindfulness”

(p. 114) and drew a direct connection between this and his own definition of reflective action.

In his transformation theory Mezirow (1991) also identified types of action, though he

further classified non-reflective and reflective action into more specific types. Non-reflective

action is broken down into habitual action, thoughtful action, and introspection. Habitual action

is very similar to Langer’s mindless action and can describe any action that we are not focused

on. Thoughtful action “involves higher-order cognitive processes to guide us” (Mezirow, 1991,

p. 106), though this sort of action can happen without reflection. A person may perform a

www.manaraa.com

17

skilled task and be fully conscious of their actions without reflecting on them. As Mezirow

(1991) said, “cognition is not the same as reflection … we resort to reflection only when we

require guidance in negotiating a step in a series of actions or run into difficulty in understanding

a new experience” (p. 107). Introspection, which involves “thinking about ourselves, our

thoughts or feelings” (Mezirow, 1991, p. 107), may also accompany thoughtful action but still

does not imply reflection, only self-awareness.

Mezirow (1991) distinguished between different types of reflection that may occur,

including reflection on content, processes, a premise, or a theory. The most basic type of

reflection is that which is focused on the content of a problem or a process. It involves thinking

about what we are doing or how we are doing it. This sort of reflection can “become an integral

part of the process of thoughtful action…or it can occur only when the action stops because of a

block, in which case it becomes part of a retrospective assessment [of our own processes]”

(Mezirow, 1991, p. 107). Mezirow (1990) referred to reflection that occurred after the fact as ex

post facto reflection.

An even higher level of reflection is reflection that questions assumptions that we have

about a problem or our motivations to engage in a particular action. Mezirow (1991) called this

premise reflection or critical reflection. This sort of reflection may “cause us to be critical of

epistemic, social, or psychological presuppositions” (Mezirow, 1991, p. 108) and can be directly

correlated to Dewey’s connection between reflection and critical thinking (Dewey, 1910). The

result of this type of critical reflection may be a perspective transformation, in which “reflection

on one’s own premises can lead to transformative learning” (Mezirow, 1990, p. 18).

Reflection-in-action. In his books The Reflective Practitioner and Educating the

Reflective Practitioner, Schön (1983, 1987) proposed the existence of a type of reflective action

www.manaraa.com

18

that is distinct from ex post facto reflection or thoughtful action. He used the term reflection-in-

action to describe the act of consciously thinking about an action while participating in it. Schön

(1983) described reflection-in-action as “central to the ‘art’ by which practitioners sometimes

deal well with situations of uncertainty, instability, uniqueness, and value conflict” (p. 50). In

these works, Schön presented an argument for transitioning from valuing and teaching a purely

scientific method to a mixture of science and artistic coaching that can better train students to

deal with the uncertain issues that await them. The general application of reflection in a

professional situation is known as reflective practice (Schön, 1987).

Schön (1987) compared the exceptional performance of everyday professionals to the

work of artists and observed that this artistic talent could further enhance the successful

application of scientific knowledge. This artistic talent might take several forms, including “an

art of problem framing, an art of implementation, and an art of improvisation—all necessary to

mediate the use in practice of applied science and technique” (Schön, 1987, p. 13). Schön (1983)

used the example of artists such as baseball players or jazz musicians who are able to adjust their

actions based on the feedback that they get during their performances. This unique ability to

think about and learn from our actions while engaged in an activity is the basis for the concept of

reflection-in-action.

Reflection-in-action happens when things don’t go as expected. Schön (1983) described

it this way:

Much reflection-in-action hinges on the experience of surprise. When intuitive,

spontaneous performance yields nothing more than the results expected for it, we tend not

to think about it. But when intuitive performance leads to surprises, pleasing or

unwanted, we may respond by reflecting-in-action. (p. 56)

www.manaraa.com

19

Once the practitioner notices that something isn’t going according to plan, he or she will respond

by conducting an on-the-spot experiment of some kind. The experiments that can be conducted

in-action, however, aren’t of the kind that is found in scientific journals. The practitioner is not

constrained by the formal rules of research, but makes quick observations about what has

changed and what may be causing that change. This cycle of experimentation is similar to the

integration of learning described in Kolb’s experiential learning theory of development (Kolb,

1984).

Several examples of reflection-in-action and reflective practice were given throughout

Schön’s works. Schön (1983) generalized each of these examples into a common pattern of

inquiry. When practitioners first encounters a problem, they “impose a frame on it” (Schön,

1983, p. 269), which means to try to look at it from a particular point of view. The practitioners

follow the results of this imposed frame while remaining “open to the situation’s back-talk”

(Schön, 1983, p. 269). Whenever the practitioners are surprised by the results of the situation,

they alter their existing frame with “new questions and new ends in view” (Schön, 1983, p. 269).

The practitioners are often able to make connections between a unique situation and a similar

situation that he has experienced before, and then are able to form a new series of experiments to

test this possible connection.

Educating for reflective practice. Schön (1987) suggested the educational concept of

the practicum as a place where reflective practice can be taught. He identified three different

kinds of practicums. Some, such as those used in computer science and chemistry, are where

“facts, rules, and procedures [are] applied nonproblematically to instrumental problems” (Schön,

1987, p. 39) and the practicum is a type of technical training. Another type of practicum that is

popular in the study of law and medicine is where students are subjected to verbal drills and case

www.manaraa.com

20

studies designed to train them to think like a practitioner in their field. The third type of

practicum can often be found in schools of art and design. These practicums “depend for their

effectiveness on a reciprocally reflective dialogue of coach and student” (Schön, 1987, p. 40). It

is on this third example that Schön focused most of his discussion regarding educating for

reflective thought.

 An example that Schön (1987) used to describe this sort of reflective practicum is one of

an architecture student learning from a teacher. The student is faced with a problem that she has

begun to have difficulty with. The instructor then takes the sketchpad and begins to help her re-

frame her problem. Schön (1987) used the artist’s sketchpad as a metaphor for reflection-in-

action, because “here they can draw and talk their moves in special action language…. Because

the drawing reveals qualities and relations unimagined beforehand, moves can function as

experiments” (p. 77). This virtual world allows the student and teacher to easily try new

approaches, examine the results, and continue to make new experiments until a suitable design

has been reached.

 In Schön’s (1987) architecture example, the students interviewed expressed a frustration

with the simultaneous process of learning about design and participating in design classes. The

student came to the realization that “she is expected to learn, by doing, both what designing is

and how to do it…. And although [others] may help her, she is the essential self-educator”

(Schön, 1987, pp. 83-84). It could be said that these students don’t know what they don’t know,

but the act of reflective practicums allow them to engage with the material. With the help of a

coach they are slowly able to construct their own repository of professional knowledge and

experience.

www.manaraa.com

21

Applications of reflective practice. The idea of reflective practice has had a great

impact on several fields of research since its introduction. This is true particularly in

“professions such as nursing, social work, planning, psychology and psychotherapy, which have

long grappled with aspects of their practice that could not be easily reduced to fixed and testable

scientific theory” (Redmond, 2006, p. 31). Several studies in the fields of nursing and health

education have shown a special interest in integrating the concepts of this theory into their

curriculum (Mann, Gordon, & MacLeod, 2009). A large number of researchers in teacher

education have also been influenced by the idea of reflective practice as well (Hatton & Smith,

1995).

 Hatton and Smith (1995) studied the application of reflective learning concepts in teacher

education. They found a wide variety of approaches, but few attempts to actually measure the

presence of reflection. The researchers conducted several studies, interviewing students from

each academic year and then analyzing and coding student essays for evidence of reflection.

They synthesized the findings of several of these previous studies into their own operational

framework of reflective thought and identified three main categories of reflection.

 The first and lowest category identified by Hatton and Smith (1995) was focused on

technical rationality, often the result of feedback from a training situation. This sort of reflection

only addressed how an assignment was performed, usually clouded by the student’s “personal

worries” (Hatton & Smith, 1995, p. 45) about their performance. The next category of reflection

was reflection-on-action. This reflection could take a variety of forms, but each variation was

performed after the action has taken place. Reflection-in-action was described by Hatton and

Smith (1995) as “the most demanding type of reflecting upon one's own practice” (p. 46). Any

or all of the previous types of reflection could be incorporated into reflective thought that

www.manaraa.com

22

happens while an act is being performed. This action was described as a practitioner’s ability to

consciously “think about an action as it is taking place, making sense of what is happening and

shaping successive practical steps using multiple viewpoints as appropriate” (Hatton & Smith,

1995, p. 46).

Most of the approaches at encouraging reflective learning attempted to integrate

reflective practice concepts directly into the instructional process. Some of these approaches,

such as Redmond’s (2006) Reflective Teaching Model, encouraged a complex form of

emancipatory learning where the student placed themselves in the position of customers

interacting with a service provider. Others simply asked students to write their thoughts about

experiences in journals, like Hatton and Smith (1995), or asked them to teach small lectures and

then discuss their experiences with peers and their instructors (Cutler, Cook, & Young, 1989).

Measurement of Reflective Thought. Kember et al. (2000) noticed the proliferation of

attempts to encourage reflective thought in education and observed “how little attention has been

paid to methods for assessing whether students do engage in reflective thinking and if so to what

extent” (p. 382). The researchers adapted Mezirow’s (1991) classifications of action and

reflection into categories that could be more easily distinguished from one another. This resulted

in an instrument that measured four distinct dimensions of a students’ level of reflective thought:

habitual action, understanding, reflection, and critical reflection. Kember et al.’s (2000)

dimension of habitual action remained virtually unchanged from Mezirow’s (1991) definition

and was described as any action that the person is not actively focusing on. Since thoughtful

action represented a very broad range of cognitive activity (including reflective action), the

authors chose to restrict this dimension to Bloom’s (1984) definition of comprehension, which

they chose to rename understanding. Bloom (1984) defines this as the lowest level of

www.manaraa.com

23

understanding where the learner could “make use of the material or idea being communicated

without necessarily relating it to other material” (p. 204).

Kember et al. (2000) retained Mezirow’s (1991) distinction between simple reflection

and critical reflection. Mezirow’s (1991) definitions of content reflection and process reflection

were grouped into one single dimension called reflection. This concept of reflection was

reinforced by definitions obtained from Dewey (1910) and Boud et al. (1985). The more

complex dimension of critical reflection was derived from Mezirow’s (1991) “premise

reflection” which he has elsewhere referred to as critical reflection (Mezirow, 1990).

Once the instrument had been created and pilot tested, Kember et al. (2000) administered

a final version to 303 students from Hong Kong studying in healthcare related fields. The results

of this study indicated some significant relationships between the four dimensions being studied,

though these relationships were expected. For example, a significant correlation was observed

between habitual action and critical reflection. The authors attributed this to the type of

professional practice described by Schön (1983) in which a practitioner would act habitually

until a confounding problem arose, causing them to critically reflect on the situation. Students

who engaged in either type of reflection were also more likely to study for understanding,

“particularly in more theoretical parts of a course, which have less obvious relationships to

practice” (Kember et al., 2000, p. 389).

Reflective thought has had a large impact on many fields of education, but the field of

interest in this study is computer science education. Edwards (2004) has shown that automated

software testing along with TDD has had a positive impact on introductory computer science

students and has hypothesized that this is due to an increased level of reflection-in-action on the

part of the student. The next section of this chapter will explore the history of research in

www.manaraa.com

24

automated testing and TDD. It will also examine Edwards’ (2004) theory linking reflection to

increased academic performance when using TDD.

Automated Grading in Computer Science Education

 Automated grading in computer science has been a goal since computer science was first

taught in an educational setting. The rationale is simple: computers are good at doing tedious

things over and over again, so why not use a computer to grade student assignments? In practice

this has not turned out to be as easy as it appears, though a certain level of success and

automation has been achieved over time. A review of automated graders conducted by Douce et

al. (2005) identified three major generations of automated grading systems: early assessment

systems, tool-oriented systems, and web-oriented systems. The authors of this review also

identified the emergence of a more recent group of systems called meta-testers. Many such

systems have been developed over the years; examples from each of these categories of systems

will be presented.

Early assessment systems. The first automated tools were oriented towards the act of

grading assignments. These tools functioned as batch-processed jobs, similar to other early

computer programs. Student work was fed through the grading system in batches and the

computer would provide the resulting analysis. The earliest example of an automated grader was

Hollingsworth’s (1960) assembly language grader; this system functioned using punch cards, and

would only return a message stating “WRONG ANSWER” (p. 528) along with some basic

indication of the source of the problem or “PROBLEM COMPLETE” (p. 528) if the program

executed successfully. Students were allowed to submit a stack of punch cards on a daily basis

to be run in a batch, and their results were returned the following day. In what may be the earliest

mention of distance education in computer science, Hollingsworth (1960) mentioned: “We

www.manaraa.com

25

currently have a student who is doing the exercises by mail. He sends his programs and

corrections, we send him grader results. It is still too early to know how well this procedure

works” (p. 529).

A more sophisticated example of this type of early grader was Aaronson’s (1973)

Automated Grading System for the Instruction of COBOL Programming (AGSICP) system,

which was developed for the automated grading of COBOL code. This system required an

instructor to provide a reference program and then it would run a series of diagnostics against the

reference program and each student’s program. The system was able to assign partial credit and

let the instructor know which lines of code had errors. It does not appear that this system was

available to students, but rather was used by graders to quickly assess student code submissions.

Tool-Oriented Systems. Douce et al. (2005) defined tool-oriented systems as “pre-

existing tool sets and utilities supplied with the operating system or programming environment”

that were offered to the students as either command-line or graphical user interface (GUI)

programming tools (p. 3). These sorts of tools were made possible by the interactive computing

environments that became available in the 80s and 90s, and they allowed students to run tests on

their own computer programs in real time.

A good example of this sort of interactive testing tool was the “TRY” system developed

by Reek (1989) at the Rochester Institute of Technology. This system was one of the first such

interactive systems available to students, and was an accessible program on the university’s

computer system. The tool had access to a collection of instructor-provided test cases but

prevented the students from seeing all the test cases. The results of the tests were written to a log

file in the instructor’s account, and the instructor could choose to provide the students with a

limited view of the results as well. Jackson and Usher’s (1997) Assessment System (ASSYST)

www.manaraa.com

26

program was an even more sophisticated testing tool. Not only did it use test cases to evaluate

the correctness of student code, it also had mechanisms for evaluating efficiency, complexity,

style, and code coverage of student-supplied test cases. The ASSYST program also had a

graphical interface that allowed for point-and-click interaction with student code.

Web-Oriented Systems. Web-oriented systems improved on the features present in

tool-oriented systems, but their real innovation was the ability for students to submit their code to

automated testers through the Internet wherever they happen to be working on their assignments.

Online systems such as the BOSS Online Submission System (BOSS; Joy, Griffiths, & Boyatt,

2005) and CourseMarker (Higgins, Hegazy, Symeonidis, & Tsintsifas, 2003) are good examples

of modern client-server web applications designed to allow students to submit their code to an

online system and have it evaluated for correctness and style using similar techniques as the

ASSYST program. These systems provide online grading tools that allow instructors to see who

has submitted assignments and statistics about their class’ efforts.

Meta-Testers. More recently, educators have developed web-based automatic testers

that have the ability to test the students code as well as student-supplied test cases. This new

class of tools is known as meta-testers because they can test the students’ code as well as the

student’s tests. With a meta-tester, a student’s grade can be based not only on their program’s

correctness but also on the completeness of their own test cases.

 Edwards’ (2003) review of existing automated testing systems concluded that students

were not encouraged for performing testing on their own and that they relied too heavily on the

instructor-provided sample data and test cases. He said that students needed “explicit,

continually reinforced practice in hypothesizing about the behavior of their programs and then

experimentally verifying (or invalidating) their hypotheses” (Edwards, 2003, p. 148). To

www.manaraa.com

27

facilitate this sort of thinking, Edwards (2003) advocated a test-first approach where students

would create their own test cases and submit them for grading alongside the instructor’s test

cases. By grading the code this way, this system would place the burden of proof for correctness

on the student’s own tests.

Edwards (2003) developed a web-based grading system called Web-CAT that evaluated

software on correctness, test completeness, test validity, and code quality by using a variety of

commercial software evaluation tools. Both students and instructors used the JUnit testing suite

to write test cases to evaluate the code. Code completeness was determined by running the

student test cases, though instructor supplied set of tests could also be used to determine if the

students tested the code thoroughly. Validity was determined by “running the student tests

against an instructor-provided reference implementation” (Edwards, 2003, p. 148). Other tools

were used to evaluate the level of existing code that is actually executed and the formatting and

documentation of the code itself. Each of these dimensions was combined into a final score that

was presented to the student, though a portion of the grade could be reserved for a human grader

to evaluate later. Students were free to use the system as often as they liked to evaluate their

code and then make corrections based on the testing results.

 Edwards tested this software on two junior level programming courses at Virginia Tech

(Edwards, 2004). The control group for his experiment was an earlier class that had submitted

their assignments online through an electronic grading system that did not provide detailed

feedback but simply tested against a set of test cases and provided a score. The experimental

group of students used the new Web-CAT tool and wrote their own test cases to be used for

grading. The experimental group was shown to have significantly higher project scores,

www.manaraa.com

28

significantly fewer test case failures, and to have started coding their software an average of two

days before the control group.

The Marmoset grading system (Spacco, 2006) was another web-based grader that was

built on Edwards’ research. Like Web-CAT, Marmoset also supported instructor and student

provided test cases but it also introduced the concept of release testing. Release testing was

intended to simulate the feedback that can be obtained by taking prototypes to a client for testing.

This was achieved by giving the students limited access to a set of additional test cases once they

successfully passed all the initial public test cases provided by the instructor. Seventy students

were surveyed in a study conducted by Spacco et al. (2006) to ascertain the effectiveness of the

Marmoset system. The students’ responses indicated that they overwhelmingly preferred

“release testing vs. post-deadline [testing]” and that they were “encouraged to start work early”

by the introduction of release testing (Spacco et al., 2006).

In a later paper, Spacco and Pugh (2006) observed that their students were creating test

cases after they had completed writing their code. This was not in accordance with his TDD

approach, so the authors made further modifications to the Marmoset system that included

removing the names of the release tests and also adding a dynamic feature to the system that

released more test cases as the student provided more of their own.

Software Testing

With the increased emphasis on automated testing in academic computer science

instruction has come a similar interest in automated testing in the area of commercial software

development. Testing has always had an important role in software engineering, though it has

sometimes received less than wholehearted participation from programmers (Beck, 2003). A

www.manaraa.com

29

recent movement in software design called TDD (Beck, 2001) has evolved into an effort to place

testing at the forefront of the software development process.

 Test-driven development. The process of TDD has its origins in the extreme

programming movement. It can be described by its two rules: “Write a failing automated test

before you write any code…[and then] remove duplication” (Beck, 2003, p. xix). Software

developers who use this style of coding are first encouraged to write test cases for their program

before beginning to implement it. Once a failed test case is written, the programmer is then

permitted to write just enough code to get the test to pass. Once that has been achieved, the

programmer then optimizes the code to remove any inefficiency that might have been introduced

while trying to make the code functional. Beck claimed that TDD reduces programmer fear,

which can result in increased communication, encourage programmers to seek helpful feedback,

and inspire decisive action in the face of difficult situations (Beck, 2003).

Test-driven development is really more about design than testing. Janzen and Saiedian

(2005) emphasized the impact that TDD has had on software design, as well as the dramatic shift

that is required on the part of the programmer to use this approach. They observed that “program

testing has traditionally assumed the existence of a program” (Janzen & Saiedian, 2005, p. 44),

and the idea of using tests to decide how to design a program was a “radical concept” (p. 44) for

many programmers. Beck (2003) has used several metaphors to explain the impact of testing on

software development. In his analogy of pulling up a heavy bucket of water from a well he calls

testing “a ratchet mechanism to enable you to rest” while cranking (Beck, 2003, p. xi). He also

called testing “a canary in a coal mine” (Beck, 2003, p. 194), alerting the programmer to

potential problems caused by changes made elsewhere in the system.

www.manaraa.com

30

Effectiveness of TDD. Quite a bit of work has been done to integrate the concepts of

TDD into computer science education, though the evidence of its effectiveness is still

inconclusive. Many previous research studies have examined the influence of TDD on external

code quality, internal code quality, and productivity, while very few have focused on TDD’s

influence on student performance and learning (Kollanus, 2010). Reviewers of the literature in

this area have highlighted the lack of properly controlled experiments with sufficient numbers of

participants (Janzen & Saiedian, 2005; Kollanus, 2010). Instructors have reported that the

concept of TDD was hard to grasp for many students (Keefe, Sheard, & Dick, 2006). Several of

the experiments in this area found no significant evidence of improvement in code quality or

productivity using TDD (Huang & Holcombe, 2008; Kollanus, 2010; Muller & Hagner, 2002).

The process of introducing TDD in curriculum is also a point of contention in the

computer science community (Desai, Janzen, & Savage, 2008). Some instructors have argued

for the integration of TDD into the curriculum from the very beginning of an introductory class

(Christensen, 2003; Edwards, 2003). Another researcher found more success in introducing the

topic of testing gradually throughout the semester and remarked that students wrote more test

cases “later in the semester after they had seen a number of examples and had feedback on their

efforts” (Leska, 2003, p. 168). Keefe et al. (2006) also recommended a more traditional

approach to testing earlier in the course, followed by an introduction of TDD later in the

semester. Desai et al. (2008) called this an “incremental instructional approach” (p. 100).

Any perceived improvements in quality or productivity may possibly be explained by

increased effort or skill on the result of the participants. Erdogmus, Maurizo, and Torchiano

(2005) conducted an experiment examining test-first vs. test-last software development. The

authors did not discover improvements in software quality, though the students did tend to write

www.manaraa.com

31

more tests and therefore more code, which would account for the measured increase in

productivity. Students who wrote more test cases also tended to spend considerably more time

testing their application (Huang & Holcombe, 2008). Barriocanal, Urban, Cuevas, and Perez

(2002) made the use of test cases optional in their experiment and observed that only about 10%

of participants chose to do so. The few students who did write test cases had previous

experience and as a result scored better on the projects.

Despite the poor results observed in many of the TDD studies, several researchers noted

that other benefits might occur when using these methods. Muller and Hagner (2002) did not

observe any improvements in code reliability or coder productivity, but they did notice a

tendency for TDD developers to re-use more of the code they had written. This may be because

they already had test cases developed for these methods. Marrero and Settle (2005) also did not

observe any significant increase in student grade performance between those who wrote test

cases and those who did not. They did observe some qualitative benefits, however. The students

who were asked to write test cases were forced to think more about interacting with their code

which helped them design the software while thinking about the tests before they began coding

it. This kind of thinking may be associated with an increase in reflective thought associated with

good testing and design.

Reflection in Computer Science Education

Edwards (2004) has made a connection between the concept of reflection and the kind of

thinking that happens when a computer science student creates a software test and runs it against

a piece of code. He identified the prerequisites for this sort of thinking as the ability to “predict

how changes in code will result in changes in behavior…[and also] continually reinforced

practice hypothesizing about the behavior of their programs and then experimentally verifying

www.manaraa.com

32

(or invalidating) their hypotheses” (Edwards 2004, p. 24). Edwards (2004) then listed five

perceived roadblocks that keep computer science educators from adopting software testing in

their classes, though he does not completely address all of them. These roadblocks were a

student’s need to master other skills before learning testing, instructor reluctance to learn and

teach a new topic, inability to grade student test cases, inability to provide rapid feedback, and a

student’s need to see value in any new topic that is introduced.

Edwards (2004) offered up automated grading software as an answer to the problems of

instructors being too busy to grade test cases and a student’s need for “frequent, concrete

feedback” (p. 27). Because students can submit their own test cases to an always-available

testing engine, they do not burden the instructor with extra grading work. A suite of instructor-

provided test cases would allow the student test cases to be compared to a reference suite to test

for completeness and accuracy. The availability of this instantaneous feedback was also

Edwards’ (2004) answer to the question of student value, since the students would be able to get

feedback on the success of their code while they were developing it instead of waiting for days

after the code has been submitted.

Edwards (2004) points to the ease and approachability of the JUnit testing software as an

answer to the concern of testing being yet another item competing for student attention and

classroom hours. In the experiments that he conducted, the only extra time devoted to JUnit

instruction was “one lecture hour of course time and several reading assignments outside of

class” (Edwards, 2004, p. 28). His students seemed to adapt to the JUnit tool itself easily.

The first roadblock identified by Edwards (2004) was left unaddressed, however.

Students who are just learning to program are wrestling with many introductory concepts, and

the idea of creating a test before writing the code may be foreign to them. This difficulty was

www.manaraa.com

33

also observed by Marrero and Settle (2005) and was the reason behind many other instructors

recommending a delayed introduction of TDD concepts (Keefe et al., 2006; Leska, 2003).

Edwards (2004), however, argued that adopting these methods in an introductory course would

require little extra work on the part of the instructor, yet provide the opportunity for great benefit.

The work started by Edwards (2004) is important and insightful, but it falls short in

several areas. Edwards (2004) was unable to tell if using an automated grader alone made a

difference in student work because both of his groups were using automated graders of some

variety. Edwards (2004) also did not attempt to verify his theory that reflective thought was the

reason that the performance of his students had increased.

Chapter Summary

 The concept of reflection is an important one in educational research. Researchers such

as Dewey (1910), Kolb (1984) and Mezirow (1990) have all reserved an important place in their

theoretical constructs for a student’s reflection upon new material. Schön (1983) introduced the

idea of reflection-in-action, which is the act of thinking about an action or a process while still

engaged in it. Edwards (2004) connected the idea of reflection-in-action to automated software

testing in computer science, and suggested that it was a potential reason for improved student

performance. Automated software testing in academic settings has evolved to now include

TDD-inspired activities that provide immediate feedback to the students. More research is

needed to determine if student-provided test cases are necessary to see a benefit in student

performance, and whether or not this feedback will result in increased levels of reflection.

www.manaraa.com

34

CHAPTER III

METHOD

 This research study used a self-selecting, between-subjects design. Groups of students in

existing introductory computer programming classes were studied. Student data were collected

through paper surveys and grade data were collected electronically from instructors. These data

were examined to look for relationships between automated software testing, levels of student

reflection, and student performance on programming assignments.

The independent variable in this study was the introduction of an automated software-

testing system for a portion of each semester. The first dependent variable was the student’s

performance during each of the three programming assignments. Another series of dependent

variables was student responses to a survey consisting of four scales that measure a student’s

level of reflective thought: habitual action, understanding, reflection, and critical reflection.

These four variables were grouped according to usage of the experimental system and then

examined as potential mediator variables for student performance on the assignments. There

were five possible moderating variables: gender, age, major, student classification, and whether

it was their first computer science class. Each of these variables was analyzed to look for

unintended effects on student grade performance or reflection.

Research Questions and Hypotheses

 Six research questions were used in this study: three questions to investigate the

interactions between the independent and dependent variables and three to investigate the

possible influence of the moderating variables on the dependent variables. Each of these

questions was further broken down into hypotheses to aid in statistical testing. This was

www.manaraa.com

35

especially important for questions involving reflection where four separate dependent variables

each needed to be tested for statistical significance.

Research Question 1. How does the use of automated software testing influence levels

of reflective thought in students compared to students who do not use automated software

testing?

H1. Average self-reported levels of habitual action will be significantly different for

students who use an automated software-testing environment compared to those who do not.

H2. Average self-reported levels of understanding will be significantly different for

students who use an automated software-testing environment compared to those who do not.

H3. Average self-reported levels of reflection will be significantly different for students

who use an automated software-testing environment compared to those who do not.

H4. Average self-reported levels of critical reflection will be significantly different for

students who use an automated software-testing environment compared to those who do not.

Research Question 2. How does the use of automated software testing influence student

performance on introductory computer science programming compared to students who do not

use automated software testing?

 H5. Average student performance on programming assignments will be higher for those

who use an automated software-testing environment compared to those who do not.

Research Question 3. To what degree does reflective thought affect student

performance on programming assignments for those who use automated software testing

compared to those who do not?

www.manaraa.com

36

H6. There will be a significant relationship between self-reported levels of habitual

action and average student performance for students who use automated software testing

compared to those who do not.

H7. There will be a significant relationship between self-reported levels of understanding

and average student performance on programming assignments for students who use automated

software testing compared to those who do not.

H8. There will be a significant relationship between self-reported levels of reflection and

average student performance on programming assignments for students who use automated

software testing compared to those who do not.

H9. There will be a significant relationship between self-reported levels of critical

reflection and average student performance on programming assignments for students who use

automated software testing compared to those who do not.

Research Question 4. How does demographic data influence levels of reflective thought

in students both who use and who do not use automated software testing?

 H10. A significant relationship does not exist among age, major, classification, gender

and self-reported levels of habitual action.

 H11. A significant relationship does not exist among age, major, classification, gender

and self-reported levels of understanding.

 H12. A significant relationship does not exist among age, major, classification, gender

and self-reported levels of reflection.

 H13. A significant relationship does not exist among age, major, classification, gender

and self-reported levels of critical reflection.

www.manaraa.com

37

Research Question 5. How does demographic data influence student performance on

introductory computer science programming assignments?

 H14. A significant relationship does not exist among age, major, classification, gender

and performance of students on introductory computer science programming assignments.

Research Question 6. How does demographic data influence student usage of an

automated software-testing environment?

 H15. A significant relationship does not exist among age, major, classification, gender

and student usage of an automated software-testing environment.

Research Setting

 The setting for this study was The University of West Florida: a mid-sized public

university in the southeastern United States. The university has an enrollment of 12,588

students. Student classification includes 10,158 undergraduate students and 2,430 graduate and

doctoral students. The population of students is diverse and approximately 68.03% of students

identify themselves as Caucasian, 12.42% as African American, 8.18% as Hispanic, 3.03% as

Asian, 3.5% as international or unreported, 0.69% as American Indian or Alaskan, 0.39% as

Hawaiian or Pacific Islander, and 3.77% from two or more ethnicities (University of West

Florida, 2014).

Participants

 The participants for this study were selected from undergraduate students in introductory

Java programming classes at the university during the Spring, Summer, and Fall 2013 semesters.

These classes were offered using a traditional classroom setting, and the students had several

programming assignments to complete throughout the course of the semester. Students in these

classes came from a variety of backgrounds and majors and had varying levels of previous

www.manaraa.com

38

experience in computer programming. The instructors for these classes participated by allowing

this study to take place within their classrooms. They also participated in the design of the

projects to make them suitable for the automated grader to evaluate the assignments.

Permission was obtained from several entities in order to conduct this research. The

Institutional Review Board (IRB) evaluated and authorized this study (Appendix A). The

instructors teaching the classes agreed to modify their projects and collect data for analysis.

Students were asked to participate in the study, and their participation was completely voluntary.

Those choosing to participate were asked to sign a consent form that informed them of the details

of the study (Appendix B). Students were informed that their identity would remain confidential,

and that those who declined to participate in the study would not be negatively impacted in the

class in any way. They would simply complete the class using traditional methods.

Instrumentation

 Data were collected from the participants in a variety of ways. Survey data were

collected using paper forms and entered into a statistical program for analysis. Student

assignment submissions were stored in a secure database belonging to the automated Web-CAT

grading software. Instructors compiled student performance data and submitted these data to the

researcher in a digital format for further processing. These data were converted and stored in a

format readable by the statistical software.

 Demographic survey. Students were asked to complete a short demographic survey

designed to gather their university email address, gender, age, major, and classification

(Appendix C). There were eight questions on this survey. The students were also asked if they

would like to receive the results of the study, and their response to this question was recorded as

well. The purpose of this survey was to collect information about the type of students enrolled in

www.manaraa.com

39

each class in order to analyze the effects that these demographics might have on other dependent

variables like reflection and student performance.

Reflective thinking survey. Kember et al. (2000) have created an instrument designed

to measure levels of reflective thinking in university students (Appendix D). Their questionnaire

measures student’s levels of thinking on four scales: habitual action, understanding, reflection,

and critical reflection. There are four questions in each scale, for a total of 16 questions in all.

Although it was developed for use with students in healthcare-related majors, the questions are

phrased in such a way that they could apply to any university-level course. The authors gave

permission to use their survey in future academic work, provided that they were properly

credited with originating the survey.

Reliability and validity. Several steps were taken by Kember et al. (2000) to examine

the reliability and effectiveness of their instrument. Preliminary versions of the survey were

tested in order to fine-tune the questions on the survey. Over three hundred health sciences

students at a major university in Hong Kong completed the final version of this instrument. The

results of this study were then analyzed to examine its reliability and validity.

A Cronbach’s alpha analysis was performed on the data from the authors’ final study to

determine if each of the four scales could be considered internally reliable. The values for each

of the four scales were: Habitual Action, 0.621; Understanding, 0.757; Reflection, 0.631; and

Critical Reflection, 0.675. Some of these values may be considered questionable because they

fall below the traditional threshold of 0.70 (Nunnally & Bernstein, 1994), but the authors

endorsed the scales and said that they had acceptable levels of internal reliability. The low

number of items for each scale may also contribute to the slightly lower than expected

Cronbach’s alpha values. In a later study, Leung and Kember (2003) used this questionnaire and

www.manaraa.com

40

achieved similar alpha values. The authors cited work done by Schmitt (1996) that further

confirmed the acceptability of lower alpha values, especially in cases such as this where multiple

dimensions are being used to measure one idea.

Confirmatory factor analysis was performed on the study to determine its model validity.

The chi-squared test and Bentler’s comparative fit index (CFI) model were used to compare the

four factors of the model to a hypothesized model. The results were a Chi-squared value of

179.3 with 100 degrees of freedom and a CFI value of 0.903. These values confirm that this

instrument passes these tests for model validity.

Automated software-testing tool. The Web-CAT automated software-testing tool was

selected for this study. This selection was based on its ease of use and adoption by several

prominent computer science departments in the United States. Amazon Web Services were used

to set up a secure database and web server for this tool. Participants who used this resource were

given access and training on how to use this tool. Data were collected on the number of

submissions from each student and was used to group the students by level of participation. The

outcome of each submission was collected as well, but was not used in the analysis.

Procedures

Four instructors teaching seven different sections of an introductory Java programming

course agreed to participate in this study. Permission was obtained from these instructors to

recruit students from within their classes. The researcher met with each section to introduce the

study to the students. The students were informed that their participation was not required and

that no penalty would be assessed for not participating.

Participant recruitment and assignment. For two sections of the Fall 2013 semester,

an incentive was offered of 10 points for each project that the students participated in. The

www.manaraa.com

41

description of the study on the consent form was read to the class, and then students were asked

to sign a consent form (Appendix B) if they wished to participate in the study. Only half of the

students in the Spring 2013 semester were invited to use the Web-CAT software. When a very

low number of students elected to use the Web-CAT software that semester, use of the Web-

CAT tool was opened up to all participants in the Summer and Fall 2013 semesters.

 Demographic survey. All students who consented to participate in the study were given

a demographic survey (Appendix C) in the same class period that the consent form was

collected. The survey was one page long and was completed quickly by the students. Once both

the informed consent form and demographic survey were completed, the students were instructed

to continue in the class as normal until they were contacted later in the semester with further

instructions on how to use the Web-CAT software.

 Setting up Web-CAT. The Web-CAT automated software-testing tool was installed on

a server hosted by Amazon Web Services and set up for use by each of the classes. Separate

class sections were configured in Web-CAT for each of the sections being taught. Assignment

collectors were set up for each section to collect the submissions from each student. During each

semester, the instructors collaborated with each other and with the researcher to design project

assignments that would work well with the testing software. Test cases were then written and

sent to the instructors for approval. These test cases were then uploaded to the assignment

collector to use for automated software testing. The students from each class were sent an email

containing logins to the system based on their university email address and a randomly generated

password. They were then given a training session on how to use these accounts to submit their

work to the grader from within their software development application.

www.manaraa.com

42

Instruction. All students in each section were taught using the same curriculum and

basic project structure. Their instructors taught them the importance of iterative development,

showed them software-testing strategies, and encouraged them to test their work frequently while

completing their assignments.

The students given access to Web-CAT were contacted via email with information about

the testing system. A training video and handouts on how to set up and use the software were

emailed to these students. In order to encourage participation, the same training was also

performed in class for students in the Summer 2013 and Fall 2013 semesters. These sessions

were completed prior to the programming assignments being studied so that everyone was ready

to use the testing system once they began.

This training session was scripted (Appendix E) to ensure a consistent presentation of the

training material. The session included a demonstration on how to submit a project and notes on

how to interpret the results of the automated software testing process. Students were given a

username and password to log into the grader and were also shown how to configure their coding

environment to connect to the grader and submit their assignments for evaluation (Appendix F).

Students were encouraged to bring their laptops so that the configuration could be tested before

they left. They were able to email the researcher to request additional assistance in configuring

and using this software, and several were assisted individually in getting started with Web-CAT.

Curriculum and assignments. The instructors in each section of the course used the

same textbooks, slides, and programming assignments. The students in all sections of this course

were first given a chance to acclimate to the demands of the course and become familiar with the

programming language. Programming assignments three, four, and five were then used for

www.manaraa.com

43

analysis in this study. For those given access to Web-CAT, additional instruction in the use of

the Web-CAT tool (Appendix E) was given prior to these three experimental assignments.

For each of the three experimental assignments, students who had access to the

automated testing tool were able to submit their code to the tool as often as they wished. Each

submission was compiled and run against the test suite created by the researcher. Students were

given immediate feedback based on the number of test cases that their software passes. For each

test case that failed, students were given the name of the test case, which served as a hint for

what they needed to improve on. Test cases were given names such as “testSumOfSquares” to

indicate a method or feature being evaluated. Student code was also run against the Sun Coding

Conventions for Java using the Checkstyle program. This program gave students feedback about

the formatting of the code, including alignment, formatting, documentation, and code use.

All participants in this experiment submitted their assignments through the drop box

feature of the university’s online learning management system. This consistent method for

submission ensured that the graders assigned to the classes would evaluate the submissions in an

equal way. They were not able to differentiate between those who were participating in the

experiment and those who were not.

 Reflective thinking survey. After all assignment data were collected, each of the

participants was given a survey of reflective thought (Kember et al., 2000) to measure their

levels of self-reported reflection. Each question used a five-level Likert scale value. The

original researchers included these instructions for scoring the instrument: “A student’s score on

each scale is computed simply by adding the response score for each of the four items. Strongly

agree was scored as 5, through to strongly disagree as 1. Hence, the scores for the four scales

could range from 4 (strongly disagree) to 20 (strongly agree)” (Kember et al., 2000). Student

www.manaraa.com

44

performance was computed by using the corrected (without bonus points) score for each of the

specific projects.

Data storage. Once the informed consent forms were gathered, a crosswalk sheet of

email addresses and identification numbers was generated containing an entry for each

participant. Survey and grade data were initially collected using the participant’s university-

assigned email address as the primary means of identification. This information was translated

into these assigned numbers to render an anonymous data set before anyone else saw it. When

the data were gathered and saved in a finished state for analysis, only these assigned ID numbers

were used. This process helped to protect the identity of the participants.

Instructors submitted the participants’ grade performance for each of the assignments

used in this study. The original survey data were collected on paper forms and stored in a secured

location. Student programming assignment submission data were stored in an online database

associated with the Web-CAT automated software-testing system. After the experiment was

finished, the database was taken offline and the student submission data were saved in a backup

image of the database server.

Once the data collection period was over, the data from each of these various sources was

entered along with their assigned identification numbers, then exported to appropriate data files

to be processed by statistical software. These files were saved on secure file storage provided by

the university. These data were available only to the researcher and will be retained along with

the data collected from the Web-CAT system for a two-year period following the study. When

the time comes to destroy the data, the digital files will be securely wiped and no copies will be

retained. All physical documents will be destroyed using a crosscut paper shredder.

www.manaraa.com

45

Statistical Analysis

 The participants in this study were separated into groups based on the usage of the

automated testing tool as an independent variable. The data from each of these groups were

analyzed using the Statistical Program for Social Sciences (SPSS) software to determine

statistical significance that would allow confirmation or rejection of the previously stated

hypotheses.

To answer the first research question regarding the influence of automated testing on a

student’s level of reflection, test scores were computed for each of the four different scales of the

reflective thought instrument. A one-way multivariate analysis of variance (MANOVA)

statistical test was performed for the hypothesis corresponding with each scale. In this test, the

use of automated software-testing software was the categorical independent variable and self-

reported levels of habitual action, understanding, reflection and critical reflection were the four

continuous dependent variables. A one-way analysis of variance (ANOVA) test was used to

examine the second research question regarding the influence of automated software testing on

student performance. In this test the use of automated software-testing software was the

categorical independent variable and average student performance was the continuous dependent

variable.

For the third research question, results from the reflective thought instrument were

separated into three groups based on their usage of the Web-CAT software. A Pearson’s product-

moment correlation was run for each group to determine if there was any correlation between

reflective thought and student performance for each usage level. A factorial MANOVA was

used for the fourth, fifth and sixth research questions to look for significant relationships

www.manaraa.com

46

between any of the demographic variables and reflection, student performance, or Web-CAT

usage. Post-hoc analysis was also conducted where appropriate.

Chapter Summary

 The goal of this research was to investigate the effects of automated testing software on

levels of student reflection and student performance. This was a self-selecting, between subjects

design that examined the performance of students in introductory computer programming

courses at the University of West Florida. Those who participated were given the option of

using Web-CAT software to evaluate the computer code that they wrote during the semester.

Student reflection was then measured with the four dimensions of Kember et al.’s (2000)

reflective thinking survey: habitual action, understanding, reflection, and critical reflection.

Participants were then compared based on Web-CAT usage level, levels of reflective thought,

and grade performance on programming assignments.

www.manaraa.com

47

CHAPTER IV

RESULTS

 The goal of this study was to examine the effect of automated software testing on student

performance in an introductory computer science setting. Levels of reflective thought were also

measured and examined for a relationship between reflection and student performance. This

chapter contains the results of the study and is organized into two sections. The first section is a

summary of the methods used to collect the data and a description of the participants who were

involved in the study. The second section contains an analysis of the data that was collected to

answer each of the research questions in this study.

Methodology Summary

 This study involved the participation of students in seven introductory Java programming

courses over the course of three semesters. All participants were given a basic demographic

survey at the beginning of the semester. The students were given access to the Web-CAT

automated software-testing tool and asked to submit projects 3, 4, and 5 to the tool in order to

gain feedback on ways that they might improve their code. They were allowed to submit each

project as often as they liked, and usage statistics were gathered during that time. At the end of

the semester, a survey of reflective thought was administered to the participants in order to

measure the level of reflection that they associated with the course. The participant’s grades for

each of these projects were also collected from their instructors in order to determine their

performance in the course.

Participants and Demographics

Over the course of three semesters, 144 students volunteered to participate in this study.

The results of the demographic survey were compiled and are summarized in Table 1. A large

www.manaraa.com

48

majority of the participants were male (79.2%), while only 20.8% were female. Most of the

participants (81.3%) reported their classification as Sophomore or Junior, while the split between

computer science majors and non-majors was more even at 53.5% majors and 46.5% non-

majors. Introduction to Java was the first programming class that 60.4% of the participants had

taken, while 39.6% reported taking a programming class previously. Participants who were 21

years old and over made up 53.1% of the population while 46.9% were under the age of 21.

Table 1

Sample Demographic Data

 n 	 %

Gender 	

Male 114 	 79.2
Female 30 	 20.8

Classification 	
Freshman 12 	 8.3

Sophomore 40 	 27.8
Junior 77 	 53.5

Senior 10 	 6.9
Graduate 4 	 2.8

Major 	
Computer Science 77 	 53.5

Non-Computer Science 67 	 46.5
First Computer Science Class 	 	 	

Yes 87 	 60.4
No 57 	 39.6

Age 	
21 and over 77 	 53.1

Under 21 68 	 46.9

Note. Sample demographics (n = 144).

www.manaraa.com

49

Reflective thinking survey. The reflective thinking survey had a 5-point Likert scale

that participants used to evaluate themselves on each of the four dimensions of reflection. Each

dimension had four questions associated with it, for a total of 16 questions in the survey. The

average response value and standard deviation are presented in Table 2.

Table 2

Reflective Thinking Survey Individual Items

Survey Questions M SD

Habitual action
1. When I am working on some activities, I can do them without thinking
about what I am doing.

3.388 1.359

5. In this course we do things so many times that I started doing them
without thinking about it.

3.510 1.195

9. As long as I can remember handout material for examinations, I do not
have to think too much.

2.612 1.198

13. If I follow what the lecturer says, I do not have to think too much on
this course.

2.561 1.167

Understanding

2. This course requires us to understand concepts taught by the lecturer. 4.347 .994
6. To pass this course you need to understand the content. 4.713 .668

10. I need to understand the material taught by the teacher in order to
perform practical tasks.

4.248 1.004

14. In this course you have to continually think about the material you are
being taught.

4.287 .887

Reflection
3. I sometimes question the way others do something and try to think of a
better way.

4.176 .969

7. I like to think over what I have been doing and consider alternative
ways of doing it.

4.088 .996

(continued)

www.manaraa.com

50

Table 2 (continued)

Reflective Thinking Survey Individual Items

Survey Questions M SD

11. I often reflect on my actions to see whether I could have improved on
what I did.

4.167 .955

15. I often re-appraise my experience so I can learn from it and improve
for my next performance.

4.078 .840

Critical Reflection
4. As a result of this course I have changed the way I look at myself. 2.843 1.280

8. This course has challenged some of my firmly held ideas. 2.735 1.327
12. As a result of this course I have changed my normal way of doing
things.

2.804 1.203

16. During this course I discovered faults in what I had previously
believed to be right.

3.206 1.129

 Internal reliability. Cronbach’s Alpha values were calculated for the four different

dimensions using the data gathered from this study (Table 3). The resulting scores for reflection

and critical reflection were above .70. The scores for habitual action and understanding were

below .70.

Table 3

Reliability of Survey of Reflective Thought

Dimension M SD α

Habitual action 12.071 3.134 0.509
Understanding 17.594 2.397 0.583

Reflection 16.510 2.817 0.737
Critical Reflection 11.588 3.719 0.743

Web-CAT usage. Participant usage data of the Web-CAT software was collected and

participants who used the tool were split into low and high usage categories based on the total

www.manaraa.com

51

number of times the participants submitted their code to Web-CAT (Table 4). The median level

of submissions was seven, so participants with seven or more submissions were grouped into the

high category and those who submitted less than seven times were grouped into the low

category.

Table 4

Total usage of Web-CAT

Submission level n 	

No submission 70 	

Low (below 7) 24 	

High (7 and above) 29 	

Total 123 	

In addition to the number of times a student submitted to Web-CAT, values were also

collected for the final percentage of tests that a student was passing for each project as well as

the score (out of 100%) that the Checkstyle tool gave their submission (Table 5). As the

semester progressed, the number of students submitting to each project decreased, as did the

average number of submissions. The average test pass rate continued to improve throughout the

semester, and the average Checkstyle score became much higher at the end as well.

Table 5

Usage of Web-CAT by Project

Project Total Users
Average number
of submissions Average test pass rate Average Checkstyle

score

3 50 5.62 56.728% 28.400%
4 46 4.43 87.359% 22.848%

5 37 2.86 94.595% 62.054%

www.manaraa.com

52

Results

 The data collected in this study were analyzed according to each research question and

their underlying hypotheses and will be addressed individually. The questions were:

1. How does the use of automated software testing influence levels of reflective thought

in students compared to students who do not use automated software testing?

2. How does the use of automated software testing influence student performance on

introductory computer science programming compared to students who do not use

automated software testing?

3. To what degree does reflective thought affect student performance on programming

assignments for those who use automated software testing compared to those who do

not?

4. How does demographic data influence levels of reflective thought in students both who

use and who do not use automated software testing?

5. How does demographic data influence student performance on introductory computer

science programming assignments?

6. How does demographic data influence student usage of an automated software-testing

environment?

Research Question 1. This research question had four corresponding hypotheses, one

for each dimension of the reflective thought survey. Students who used the Web-CAT software

were hypothesized to have significantly different levels of habitual action (H1), understanding

(H2), reflective thought (H3), and critical reflection (H4). A one-way MANOVA test was

conducted for each hypothesis to determine if there was a difference in levels of reflective

thought based on Web-CAT submission level. For H1, the test was not significant and the null

www.manaraa.com

53

hypothesis was not rejected. For H2, the test was significant at the p < .05 level, with values of

F(2,100) = 3.640, p = .030. Post-hoc analysis performed using Tukey’s HSD test revealed that

students in the high usage category (M = 16.571, SD = 3.096) were found to have significantly

lower scores in the understanding dimension than those who did not use the tool at all (M =

17.885, SD = 1.896). The null hypothesis was rejected. For H3, the test was not significant and

the null hypothesis was not rejected. For H4, the test was not significant and the null hypothesis

was not rejected.

Research Question 2. This research question had a single hypothesis, H5, which stated

that average student performance on programming assignments would be higher for those who

use an automated software-testing environment than for those who do not. An ANOVA test was

conducted to determine if there was a difference in student performance based on Web-CAT

submission level. The test was significant at the p < .05 level, with values of F(2, 120) = 5.044,

p = .008. The null hypothesis was rejected. Post-hoc analysis performed using Tukey’s HSD

test revealed that students in the high usage category (M = 80.390, SD = 19.004) were found to

have significantly higher average project scores than those who did not use the tool (M = 63.962,

SD = 26.909). However, the performance of students in the low usage category (M = 74.083, SD

= 23.069) did not differ significantly from those who did not use Web-CAT.

Table 6

Total usage of Web-CAT and Average Student Performance

Submission level n 	 M SD

No submission 70 	 63.962 26.909

Low (below 7) 24 	 74.083 23.069
High (7 and above) 29 	 80.390 19.004

Total 123 	 69.810 25.349

www.manaraa.com

54

Research Question 3. This research question had four corresponding hypotheses, one for

each dimension of the reflective thought survey. Students who used the Web-CAT software

were hypothesized to have a significant relationship between student performance and habitual

action (H6), understanding (H7), reflective thought (H8), and critical reflection (H9). Pearson’s

product-moment correlation was run for each Web-CAT usage group to determine the

relationship between reflective thought and student performance. Correlations were run for

students who did not use Web-CAT at all, those who used Web-CAT in the low usage level

(from 1 to 6 times), and for those who used Web-CAT seven times or more. For each of these

usage levels, the results of the tests indicated that there was no significant correlation between

the four variables and performance. With regard to the hypotheses, the tests were not significant

for any of the Web-CAT usage levels and therefore the null hypotheses for H6 through H9 were

not rejected. Additional analysis using multiple regression was desired but not conducted

because there was not a linear relationship between the data and so the prerequisites for the test

were not met.

Research Question 4. This research question had four corresponding hypotheses which

stated that student demographics would not influence self-reported levels of habitual action

(H10), understanding (H11), reflection (H12), and critical reflection (H13). Five demographic

values were tested: gender, age (under 21 or 21 and over), major (computer science or not),

classification, and whether it was their first time in a computer science class or not. A factorial

MANOVA was used to test the influence of these five demographic variables on the four self-

reported levels on the reflective thought survey.

www.manaraa.com

55

For habitual action (H10), the results showed that the interaction between first time in a

computer science course and age had a significant effect (Pillai’s Trace = .121, F(1,97) = 8.516,

p = .005), therefore the null hypothesis was rejected. Older students in a computer science class

for the first time had significantly higher levels of self-reported habitual action than younger first

time computer science students, while the opposite case was true for students who were not in a

computer science class for the first time. Figure 1 shows a graph of this interaction.

Figure 1. Line graph showing self-reported levels of critical reflection by age and first time in a
computer science course.

www.manaraa.com

56

For understanding (H11), the results showed that the interaction between classification

and age had a significant effect (Pillai’s Trace = .109, F(1,97) = 5.495, p = .022), therefore the

null hypothesis was rejected. Levels of self-reported understanding were slightly higher for

younger sophomores when compared to older sophomores, but younger juniors had dramatically

lower levels than older juniors. Figure 2 shows a graph of this interaction.

Figure 2. Line graph showing self-reported levels of understanding by age and classification.

For reflection (H12), there was no significant effect and therefore the null hypothesis was

not rejected. For critical reflection (H13), the results showed that the interaction between

www.manaraa.com

57

classification and major had a significant effect (Pillai’s Trace = .253, F(3,97) = 4.759, p = .005),

therefore the null hypothesis was rejected. Freshman computer science majors had a much

higher level of critical reflection than non-majors, while sophomore non-majors had much higher

critical reflection than computer science majors. Figure 3 shows a graph of this interaction.

Figure 3. Line graph showing self-reported levels of critical reflection by major and
classification.

Research Question 5. This research question had a single hypothesis, H14, which stated

that student demographics would not influence average student performance on programming

assignments. Five demographic values were tested: gender, age (under 21 or 21 and over), major

www.manaraa.com

58

(computer science or not), classification, and whether it was their first time in a computer science

class or not. A factorial MANOVA was used to test the influence of these five demographic

variables on the student’s average performance on projects 3 through 5. The results showed that

there was no significant effect on student performance; therefore the null hypothesis was not

rejected.

Research Question 6. This research question had a single hypothesis, H15, which stated

that student demographics would not influence student usage of an automated software-testing

environment. Five demographic values were tested: gender, age (under 21 or 21 and over),

major (computer science or not), classification, and whether it was their first time in a computer

science class or not. A factorial MANOVA was used to test the influence of these five

demographic variables on the number of overall times a student submitted files to the Web-CAT

software. The results showed that there was no significant effect on the number of submissions;

therefore the null hypothesis was not rejected.

Chapter Summary

 This chapter provided an analysis of the results obtained in this study. There were 144

participants in this study collected from a broad variety of ages, classifications, and fields of

study. Because usage of the Web-CAT software was optional, the grouping of the participants

was self-selecting and resulted in three usage levels: no usage, low usage (less than seven total

submissions), and high usage (seven or more total submissions). These usage data were

combined with participant demographic and reflection surveys as well as software project

performance data gathered from their instructors to answer the research questions described in

this study.

www.manaraa.com

59

 The first research question regarding reflection and Web-CAT usage found significantly

lower levels of understanding reported by participants in the high Web-CAT usage category. All

other categories of reflection did not have significant results. The second research question

involved Web-CAT usage and student performance. In this case, students who were in the high

usage category were found to have significantly higher project scores than those who did not use

the tool at all. Research question three proposed a relationship between levels of reflection and

student performance, but no correlation with student performance was found for any of the

dimensions of reflection.

 The final three research questions involved investigating the relationships between

student demographics and the other variables in this study. The fourth research question

examined the relationship between demographics and levels of reflection. Habitual action was

significantly affected by age and whether it was the student’s first computer science course.

Understanding was also significantly affected by age and a student’s classification. The top two

levels of reflection and critical reflection were not affected by any demographic variables,

however. Research question five did not indicate any significant relationships between student

demographics and student performance. Similarly, research question six also did not indicate a

relationship between student demographics and usage of the Web-CAT software.

www.manaraa.com

60

CHAPTER V

DISCUSSION

 This study was designed to examine the effectiveness of an automated software-testing

environment and investigate the possibility that reflection might be associated with performance

while using such a tool. In this chapter, the findings of this study will be summarized and

discussed with an emphasis on their educational impact and implications for future work.

Discussion of Results

 There were five research questions in this study, several of which had multiple

hypotheses associated with it. The discussion of results in this section will be organized by

research question. A summary of the results for each question will be given, followed by a

discussion of these results.

 Research Question 1. The first research question explored the effect of automated

software testing on reflective thought. This question had four hypotheses that corresponded to

each level of reflective thought, H1 through H4, and was answered using a one-way MANOVA

test.

 Findings. Self-reported levels of reflective thought were measured with the reflective

thought survey developed by Kember et al. (2000). Responses to this survey were tallied to yield

four scores representing levels of reflective or non-reflective thought. Usage of Web-CAT was

determined by grouping students into three different categories based on their total usage of

Web-CAT. Students with the mean number of submissions (seven) or higher were grouped into

a high usage category, while those who submitted code less frequently than that were placed in a

low usage category. Students who did not use Web-CAT at all were grouped into a third

category of no usage. A one-way MANOVA test was run to see if any of the reflective survey

www.manaraa.com

61

dimensions varied significantly based on Web-CAT usage. The results showed that of the four

dimensions of reflective thought, the only one to have significantly different levels based on

Web-CAT usage was understanding. A post-hoc test using Tukey’s HSD showed that students in

the high usage level had significantly lower levels of reported understanding than those in the

low usage level or those who did not use the tool at all.

 Discussion. Mezirow (1991) discussed types of action as they relate to reflection, which

at a high level he separated into non-reflective and reflective action. He further separated non-

reflective action into habitual action and thoughtful action, while reflective action was separated

into reflective action and premise (or critical) reflection (Mezirow, 1991, pp. 106-110). These

four categories were the basis for Kember et al.’s (2000) Questionnaire for Reflective Thinking,

which had similar categories of habitual action, understanding, reflection, and critical reflection.

Of the four categories, understanding is the only one that differs substantially from Mezirow’s.

 In their discussion of this category, Kember et al. (2000) begin with Mezirow’s (1991)

thoughtful action category, stating “thoughtful action can be described as a cognitive process.

Much of the ‘book learning’ which takes place in universities is best classified as thoughtful

action” (p. 384). This relationship with learning led Kember et al. (2000) to refer to Bloom’s

(1984) taxonomy as a way of measuring this type of thoughtful action. Because the scope of this

concept was so large, their measurement was narrowed to the comprehension portion of Bloom’s

(1984) taxonomy. According to Kember et al. (2000):

[Bloom’s] definition of comprehension as “understanding without relating to other

situations” captured the distinction we wished to make (which was) an academic type of

learning in which the student might reach an understanding of a concept without

reflecting upon its significance in personal or practical situations (p. 384).

www.manaraa.com

62

Kember et al. (2000) observed a positive correlation between understanding and both

reflection and critical reflection. They stated, “Students who engage in either form of reflection

may also have a tendency to study for understanding, particularly in more theoretical parts of a

course, which have less obvious relationships to practice” (Kember et al., 2000, p. 389). In this

study, the understanding dimension did not significantly correlate to any other dimension.

Instead, students who used Web-CAT had significantly lower levels of self-reported

understanding.

A decrease in a student’s self-reported levels of understanding means that these students

agreed less with the statements that they were required to study for understanding in the course.

Yet these students also used Web-CAT more, and as we have observed in the results for

Research Question 2 they also showed higher performance on software projects. Kember et al.

(2000) suggested that understanding was related to theoretical understanding in a course, such as

performance on tests and quizzes. This measurement of understanding may not have had much

of a connection with practical applications such as software projects, however.

Kember et al. (2000) refer to the short time of a university course as a possible reason

why both habitual action and critical reflection showed lower mean scores than the other two

dimensions. Lower mean scores for these two dimensions were also observed in this study. The

limited time constraints of this study may have been a reason why reflection levels failed to

change significantly during the observation. Future studies may benefit from either a longer

observation window during a semester or even span multiple semesters to give reflection a

chance to occur.

The failure to observe a measured change in levels of reflection could also be a

confirmation of Edwards’ (2004) theory that true reflection-in-action would only occur when a

www.manaraa.com

63

student is “given the responsibility of demonstrating the correctness of his or her own code” by

writing their own test cases for Web-CAT. Marrero and Settle (2005) also noted that requiring

students to write test cases forced them to think more about how the software they were writing

was supposed to be used. Test-driven design requires students to be involved in experimentation

and reflective thought during the iterative process of software testing and design. These actions

align themselves very well with the modes of learning referred to as active experimentation and

reflective observation in Kolb’s (1984) LSI, as well as Schön’s (1983) theory of reflection-in-

action. Given the practical constraints of this study it was not possible to require students to

submit such test cases, but this remains a useful question to be answered in future work.

 Conclusion. Significantly different levels of reflective thought were not observed in this

study for students who used Web-CAT at any level. A decrease in studying for understanding

was observed for students who used Web-CAT at a high level, but this was not considered

reflective thought and could be attributed to differences in how these students studied for the

theoretical portions of the course or other factors not being measured in this study.

Research Question 2. The second research question explored the effect of automated

software testing on average student performance on programming assignments. This question

had one hypothesis (H5) and was answered using a one-way ANOVA test.

Findings. Average student performance was computed by averaging student scores for

projects three, four and five. Only students with scores for all three projects were used for this

test. The Web-CAT usage categories of none, low, and high usage that were created for research

question one were used in this question as well. A one-way ANOVA test was run and the results

showed that average student performance differed significantly based on levels of Web-CAT

usage. Post-hoc analysis was done using Tukey’s HSD test, and the results showed that students

www.manaraa.com

64

in the high usage level had significantly higher project scores than those who did not use Web-

CAT at all. Students in the low usage level, however, did not have significantly different project

scores than those who did not use Web-CAT.

Discussion. Many of the existing works on automated grading describe the introduction

of new grading tools but do not describe the effects that such tools have had on student

performance (Higgins et al., 2003; Jackson & Usher, 1997; Joy et al., 2005). Edwards’ (2004)

study, however, did compare the performance of students who used an earlier automated grading

tool called Curator with those who were required to write their own test cases using Web-CAT.

Students using Web-CAT in Edwards’ (2004) study performed significantly better when

averaging the scores of four programming assignments. The use of TDD has not been

consistently shown to improve student performance, however. Marrero and Settle (2005) studied

the effects of TDD on student performance and found that student performance did not

significantly increase when students were required to write test cases.

This study did not require students to write their own test cases. Rather, it relied on test

cases written by the researcher to evaluate whether student submitted code met the requirements

of the assignment. Edwards (2003) claimed that the problem with prior automated grading

systems without student test cases (such as Curator) was that “students focus on output

correctness first and foremost…due to the fact that the most immediate feedback students receive

is on output correctness” (p. 149). This may have been true in this study as well, though the

presentation of an evaluation opportunity to students will often result in their being interested in

seeing how well they perform. Students who used Web-CAT also had their code style and

formatting evaluated by a Checkstyle tool. Over time it was shown that the mean values for both

percentage of JUnit tests passed and Checkstyle evaluation scores improved.

www.manaraa.com

65

Conclusion. Previous research has involved two factors: introduction of student-written

test cases and student usage of automated testing tools. Edwards (2004) used automated testing

tools throughout his study, but observed an increase in student performance when student-written

tests were used. Marrero and Settle (2005) did not use automated testing, but saw no

improvement when student-written tests were introduced. This study looked at a third

combination of these factors by not using student-written test cases but introducing automated

software testing. Though student-written tests were not used in this study, students who used

Web-CAT frequently saw their average project scores improve significantly.

Research Question 3. The third research question explored the effect of reflective

thought on student performance when Web-CAT usage was taken into account. There were four

hypotheses associated with each level of reflective thought, H6 through H9, and analysis was

performed using Pearson’s product-moment correlation. The variables used to answer this

research question (self-reported levels of reflective thought, average student performance, and

Web-CAT usage category) were the same as those defined previously in research questions one

and two. A Pearson product-moment correlation was run for each level of Web-CAT usage, and

all three tests indicated that there was no correlation between the four levels of reflective thought

and average student performance.

As mentioned in the discussion of research question one, levels of reflection failed to

vary significantly among the different levels of Web-CAT usage. The lack of change in

reflection may have been due to the limited time available during the semester or because

students were not required to write their own test cases. Even though student performance has

been shown to vary with Web-CAT usage, there was no observed relationship between variations

www.manaraa.com

66

in student-reported levels of reflection and average project performance for students in the same

Web-CAT usage level.

Research Question 4. The fourth research question examined whether or not student

demographic data influenced student self-reported levels of reflection. There were four

hypotheses associated with each level of reflective thought, H10 through H13, and a factorial

MANOVA was used to test for both main effects and interaction effects of the demographic

variables on levels of reflection.

Findings. There were five independent variables in this research question that were

collectively known as student demographics. These variables were: gender, age (under 21 or 21

and over), major (computer science or not), classification, and whether it was their first time in a

computer science class. The four dependent variables that represent levels of student-reported

reflective thought have been previously discussed in research questions one and three.

Because of the number of variables used in the factorial design used to test these

hypotheses, the resulting list of effects was quite long. Most of the interactions were not

significant, but three of the four reflection levels had a specific interaction that affected it.

Habitual action (H10) was shown to be affected by the interaction of whether it was the student’s

first time in a computer science course and their age. Older first-time computer science students

had higher levels of habitual action as well as younger computer science students with previous

experience (Figure 1). Understanding (H11) was affected by interaction of classification and age.

Studying for understanding happened most with Sophomores under 21 and Juniors 21 and over,

while Juniors under 21 reported much lower levels of understanding (Figure 2). None of the

demographic variables significantly affected reflection (H12), but critical reflection (H13) was

significantly affected by the interaction of whether the student was a computer science major or

www.manaraa.com

67

not and their age. Freshman non-majors had dramatically lower levels of critical reflection than

freshman computer science majors, while sophomore computer science majors reported levels

that were both higher than non-majors and also the highest levels reported (Figure 3).

Discussion. Demographic values were examined for their effect on the primary variables

of reflection in this study so as to exclude them as potentially confounding variables. Though no

single variable was shown to affect reflection, several combinations were associated with

significantly different reflection levels. Though the effects of these demographics on reflection

levels are interesting, the existing literature does not contain observations to confirm or explain

these specific interactions. Further research is needed into the effects of demographic variables

such as first time in a computer science course, classification, and age on self-reported levels of

student reflection, specifically using the instrument developed by Kember et al. (2000).

Research Question 5. The fifth research question examined whether or not student

demographic data influenced average student performance on programming assignments. There

was a single hypothesis, H14, and a factorial design was used to test for both main effects and

interaction effects of the demographic variables on student performance. No significant effects

were found to show an effect of demographics on student performance. The variations in student

performance observed in research question 2 cannot be attributed to any of these demographic

variables.

Research Question 6. The sixth research question examined whether or not student

demographic data influenced student usage of the Web-CAT software testing environment.

There was a single hypothesis, H15, and a factorial design was used to test for both main effects

and interaction effects of the demographic variables on Web-CAT usage. No significant effects

were found to show an effect of demographics on Web-CAT usage.

www.manaraa.com

68

Implications of the Study

 The goal of this study has been to examine the effectiveness of automated software-

testing tools like Web-CAT in introductory programming courses. Do automated software-

testing tools improve student performance, even if test-driven design methods aren’t used? If so,

could Edwards’ (2004) application of Schön’s (1983) reflection-in-action theory be linked to

Web-CAT usage and explain some of the improvements in student performance? In this study,

average student project performance has been shown to increase with high levels of Web-CAT

usage. Reflection, however, has not been shown to have any connection with Web-CAT usage

or student performance. Even though the link to reflection was not verified in this study, there

are still several important implications regarding the academic benefits of automated software-

testing tools. Several stakeholders were previously identified as potentially benefitting from the

results of this study. The implications for each of them will be discussed individually in this

section.

 It is important to note that when adoption of an automated software-testing tool is

discussed, Web-CAT is used as the primary example. This is only because this tool was used for

this study and is therefore the one that the researcher has had the most experience with. There

are several other tools available that may meet the stakeholders’ needs as well or better, and the

stakeholders are advised to investigate each of the tools available to see what might be the best

fit for their application.

 Instructors. Adoption of an automated software-testing tool is not a trivial decision to

make. It requires a restructuring of curriculum to make assignments more testable, and test cases

must be written for each assignment in order to evaluate student submissions. The automated

www.manaraa.com

69

testing tool must be installed and maintained. Students must be assigned accounts for Web-

CAT, taught how to use the software, and have their technical support questions answered.

Much of this work will fall to the instructor who first has the vision to adopt this tool.

Though the workload involved in carrying out such a project is significant, the benefits

from doing so are significant as well. Student project performance has been shown to increase in

both Edwards (2004) and in this study. Also, much of the effort expended in setting up an

automated grading tool will be recouped after it is set up. Once an instructor has gone through

the additional effort of creating testable assignments and developing a useful suite of test cases,

the assignments could then be used in future semesters with little rework. Teaching assistants, if

available, can be used to support the grading tool and do much of the basic syntax and style

grading on their own. All of this infrastructure would allow an instructor to spend more time

advising students on coding style, software design, and the quality of their work.

For maximum benefit it is recommended that instructors require the usage of Web-CAT

as the single central place for code submission, testing, grading and feedback. If this approach

were taken, a trail of progress and feedback would be available for each student’s project.

Instructors would then have a single repository containing multiple revisions of each student’s

code. This would allow them to see each student’s progress and examine who is having trouble

with concepts or is lagging behind. The latest version of a student’s code would be readily

accessible, which could help in meetings during office hours or with email correspondence.

These progress trails would also help reduce plagiarism because instructors would have more

evidence to examine in addition to a final submission. Many of these benefits could also be

realized if any version control system were adopted, but the integrated nature of a tool like Web-

www.manaraa.com

70

CAT means that the students and instructors can achieve all these goals by learning and using

one single tool.

Computer science departments. As previously described, setting up an automated

grading tool requires a lot of effort and planning. It would not be feasible for each instructor to

set up their own implementation of automated grading, each with their own server. Computer

science departments can encourage and coordinate adoption of these tools at a departmental

level, making them available to instructors who are interested in using them. Departments can

also make server and technical resources available towards this goal, establishing a central

installation of a tool like Web-CAT to be used by all students, even from multiple classes. In

exchange for this investment, departments will have empowered instructors with tools that will

help them teach test-driven programming and grade their projects more quickly and accurately.

Students. Students may have the least influence on the adoption of a tool like Web-

CAT, but they would certainly benefit the most. If instructors or departments adopt this type of

software, students may experience improved project performance because they will spend more

time thinking about, testing, and refining their software. Students will receive instant feedback

not only on the correctness of their software but also on the formatting and style of the code.

Their code will be backed up on the server, and they will always be able to log in and see how

their code is progressing from any web browser.

Limitations of the Study

 Kember et al. (2000) suggested using their questionnaire for reflective thinking in a

repeated measures design, administering it at the beginning and at the end of the courses they

were testing. They stated that “any changes to reflective thinking can then be reasonably

attributed to the course and it’s teaching and learning environment” (Kember et al., 2000). In

www.manaraa.com

71

this study the survey was administered only once, so it was not possible to measure changes in a

person’s self-reported levels of reflection. Because the effect on the students may have been a

small one, it is possible that a student’s tendency to respond positively or negatively to the

survey may have overshadowed any changes in reflection that the use of the Web-CAT tool

might have generated.

 The levels of internal reliability measured while using Kember et al.’s (2000)

questionnaire were quite low for the dimensions that measured non-reflective thought. The

Chronbach’s alpha values calculated for habitual action (0.509) and understanding (0.583) were

very poor compared to the traditional threshold of .70 (Nunnally & Bernstein, 1994) and were

lower than those found in the instrument author’s previous studies (Kember et al., 2000; Leung

& Kember, 2003). This may mean that the students did not respond to each collection of

questions as consistently as students in the previous studies, or it could be that the limited

number of questions measuring one dimension was a limiting factor on internal reliability.

The two categories measuring reflection had much higher alpha values, however. Values

for reflection (0.737) and critical reflection (0.743) were above the traditional .70 threshold

(Nunnally & Bernstein, 1994) and were higher than those found in the instrument author’s

previous studies (Kember et al., 2000; Leung & Kember, 2003). This inconsistency with the

reflective thinking survey could have been ameliorated by the use of repeated measures as

mentioned previously or by the use of additional instruments that measured similar concepts.

Leung and Kember (2003) used the Study Process Questionnaire (Biggs, 1987) alongside their

reflective thought survey and found favorable relationships between them, encouraging the use

of the two frameworks together in future studies.

www.manaraa.com

72

 The nature of the introductory Java course being studied meant that student reliability in

completing assignments or turning them in promptly was often sporadic. The instructors

participating in this study usually offered students the opportunity to “drop” their lowest grade.

This resulted in several low or zero grades reported for projects three through five, yet students

did well in the course because they did optional work or otherwise excelled later in the semester.

In spite of all this, if a grade of zero was reported for a student during the period being studied it

was used to calculate their grade average for this study. The frequent occurrence of these zero

grades may have affected the measurement of student performance in such a way that it did not

reflect their total achievement for the semester. A longer study involving the use of Web-CAT

for the whole semester or even multiple semesters would have allowed more data points on

performance to be gathered and perhaps a more accurate measurement to be made.

Recommendations for Further Research

 This study involved the optional use of Web-CAT as a supplementary tool for a single

semester in a course that did not include student-written tests. Additional research is needed to

see if variations in any of these factors can be further shown to influence student performance,

and if self-reported levels of student reflection can be associated with these changes. What if

Web-CAT was a mandatory tool for a class? In a mandatory situation a student would have to

submit their code at least once. What level of student usage of Web-CAT would have to happen

before a student began to see benefits in performance?

The benefit of student-written test cases in an automated testing environment is another

topic that requires future research. Marrero and Settle (2005) found that student-written tests

alone do not affect student performance. However, they were not using an automated software-

www.manaraa.com

73

testing tool. Would student-written tests make a difference in levels of reflection as Edwards

(2004) theorized?

 The setting for this study involved classes that were taught in person. However, many

universities offer introductory computer science courses entirely online. If a similar study were

conducted with online-only students, would similar increases in student performance be

observed? Perhaps course delivery method could be accounted for by conducting an experiment

that involved large enough numbers of both in-person and online participants so that it would be

possible to control for any effects that online course delivery could introduce. It would also be

interesting to ask online-only students what problems were solved or introduced when they were

asked to use an automated software-testing tool.

The demographic data collected in this study was interesting because of the observed

relationships to several of the dimensions on the reflection survey. However, there could also

have been many more factors influencing reflection than just usage of Web-CAT. Biggs (1987)

describes approaches to learning that may account for some of the variation in observed levels of

reflection. In future research studies it may be useful to administer Biggs’ (1987) Study Process

Questionnaire (SPQ) in order to group students with similar approaches to learning. These

groups could then be examined to see if those who use automated testing software report higher

levels of reflection or have higher average project scores than those who do not.

Further research is also needed to examine the issue of automated testing and reflection at

higher levels and for longer periods of time. This study only focused on three projects in the

middle of a semester. How do levels of reflection affect overall student performance, including

exams and other grades? Is there a connection between Web-CAT usage and overall class

performance? As previously suggested, a study involving the same group of students using

www.manaraa.com

74

Web-CAT over multiple semesters of computer science classes would allow repeated

measurements of reflection to be taken and perhaps allow for more variation. These higher-level

investigations may provide a clearer picture of the relationships between reflection and student

performance in an automated testing environment. These students would also be more likely to

be computer science majors, thereby more accurately reflecting the target population.

Conclusion

Automated software-testing tools like those described by Edwards (2003) and Spacco

(2006) introduce a level of automation to introductory computer science classes that has been

missing from many classrooms. They allow both instructors and students to spend more time

focusing on quality. Instructors can allow their test suite to examine validity and edge-case

testing while freeing up time for them to examine student code for things like style and

formatting. Students have an instructor test suite to guide them, and if they desire to write their

own tests they can allow the tests to help them bridge the gap between requirements and

implementation. This study has shown that high usage of Web-CAT is associated with an

improvement in average student performance, even without the use of student-written tests.

Edwards (2004) makes a strong case for asking students to write test cases, even during

their very first computer science class. The curriculum or other limitations may prevent

instructors from making such a change in their courses. Rather than not using automated grading

at all, instructors should seek to integrate such technology where possible. Students should be

given the benefit of receiving feedback on their code’s accuracy and formatting immediately

without having to wait until it is graded. Measures such as masking the test data and obscuring

the types of test being used can help counteract “coding for the test” behavior. The benefits of

TDD are acknowledged, but student-written tests should be a goal and not a starting point.

www.manaraa.com

75

REFERENCES

Barriocanal, E. G., Urban, M. S., Cuevas, I. A., & Perez, P. D. (2002). An experience in

integrating automated unit testing practices in an introductory programming course.

SIGCSE Bulletin, 34(4), 125-128. doi:10.1145/820127.820183

Beck, K. (2001). Aim, fire. IEEE Software, 18(5), 87-89. doi:10.1109/52.951502

Beck, K. (2003). Test-driven development by example. Boston, MA: Addison-Wesley.

Biggs, J. B. (1987). Student approaches to learning and studying. Melbourne, Australia:

Australian Council for Educational Research.

Bloom, B. S. (1984). Taxonomy of educational objectives, Book I: Cognitive domain. New York,

NY: Longman.

Boud, D., Keogh, R., & Walker, D. (1985). Promoting reflection in learning: A model. In D.

Boud, R. Keogh, & D. Walker (Eds.), Reflection: Turning experience into learning (pp.

18-40). London, England: Kogan Page.

Christensen, H. B. (2003, June). Systematic testing should not be a topic in the computer science

curriculum! Paper presented the 8th annual conference on Innovation and technology in

computer science education, Thessaloniki, Greece.

Cutler, B., Cook, P., & Young, J. (1989, February). The empowerment of preservice

teachers through reflective teaching. Paper presented at the annual meeting of the

Association of Teacher Educators, St Louis, MO. Abstract retrieved from ERIC database.

(ED325473)

Desai, C., Janzen, D., & Savage, K. (2008). A survey of evidence for test-driven development in

academia. Inroads – SIGCSE Bulletin, 40(2), 97-101. doi:10.1145/1383602.1383644

Dewey, J. (1910). How we think. Boston, MA: Heath & Co.

www.manaraa.com

76

Dewey, J. (1938). Experience and education. New York, NY: Collier MacMillan Publishers.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of

programming. ACM Journal of Educational Resources in Computing, 5(3), 1-14.

doi:10.1145/1163405.1163409

Edwards, S. H. (2003, October). Rethinking computer science education from a test-

first perspective. Paper presented at the 18th ACM SIGPLAN Symposium on

Object-Oriented Programming Systems, Languages, and Applications, Anaheim, CA.

Edwards, S. H. (2004, March). Using software testing to move students from trial-and-

error to reflection-in-action. Paper presented at the SIGCSE Technical Symposium on

Computer Science Education, Norfolk, VA.

Erdogmus, H., Maurizo, M., & Torchiano, M. (2005). On the effectiveness of the

test-first approach to programming. IEEE Transactions on Software Engineering, 31(3),

226-237. doi:10.1109/TSE.2005.37

Hatton, N., & Smith, D. (1995). Reflection in teacher education: Towards definition and

implementation. Teaching & Teacher Education, 11(1), 33-49. doi:10.1016/0742-

051X(94)00012-U

Higgins, C., Hegazy, T., Symeonidis, P., & Tsintsifas, A. (2003). The CourseMarker

CBA system: Improvements over Ceilidh. Education and Information Technologies, 8(3),

287-304. doi:10.1023/A:1026364126982

Hollingsworth, J. (1960). Automatic graders for programming classes. Communications

of the ACM, 3(10), 528-529. doi:10.1145/367415.367422

www.manaraa.com

77

Huang, L., & Holcombe, M. (2008). Empirical investigation towards the effectiveness of Test

First Programming. Information and Software Technology, 51, 182-194.

doi:10.1016/j.infsof.2008.03.007

Jackson, D., & Usher, M. (1997). Grading student programs using ASSYST. ACM

SIGCSE Bulletin, 29(1), 335-339. doi:10.1145/268085.268210

Janzen, D., & Saiedian, H. (2005). Test-driven development: Concepts, taxonomy, and future

direction. Computer, 38(9), 43-50. doi:10.1109/MC.2005.314

Jarvis, P. (1987). Adult learning in the social context. London, England: Croon Helm, Ltd.

Joy, M., Griffiths, N., & Boyatt, R. (2005). The BOSS online submission and

assessment system. ACM Journal on Educational Resources in Computing, 5(3), 1-28.

doi:10.1145/1163405.1163407

Keefe, K., Sheard, J., & Dick, M. (2006, January). Adopting XP practices for teaching object

oriented programming. In D. Tolhurst, & S. Mann, (Eds.), Computing Education 2006.

Proceedings of the Eighth Australasian Computing Education Conference (ACE2006),

52, 91-100. Retrieved from: http://crpit.com/confpapers/CRPITV52Keefe.pdf

Kember, D., Leung, D., Jones, A., Loke, A., McKay, J., Sinclair, K., … Yeung, E. (2000).

Development of a questionnaire to measure the level of reflective thinking. Assessment

and Evaluation in Higher Education, 25(4), 381-395. doi:10.1080/026029300449272

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A

historical review, a meta-analysis, and a preliminary feedback intervention theory.

Psychological Bulletin, 119(2), 254-284. doi:10.1037/0033-2909.119.2.254

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and

development. Englewood Cliffs, NJ: Prentice-Hall.

www.manaraa.com

78

Kollanus, S. (2010, September). Test-driven development - still a promising approach? Paper

presented at the Seventh International Conference on the Quality of Information and

Communications Technology, Porto, Portugal.

Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley Publishing.

Leung, D., & Kember, D. (2003). The relationship between approaches to learning and reflection

upon practice. Educational Psychology, 23(1), 61-71. doi:10.1080/01443410303221

Leska, C. (2004). Testing across the curriculum: Square one! Journal of Computing Sciences in

Colleges, 19(5), 163-169. Retrieved from

https://www.ccsc.org/publications/pubsJournal.htm

Lewin, K. (1946). Action research and minority problems. Journal of Social Issues, 2(4),

34-46. doi:10.1111/j.1540-4560.1946.tb02295.x

Mann, K., Gordon, J., & MacLeod, A. (2009). Reflection and reflective practice in health

professions education: A systematic review. Advances in Health Science Education,

14(4), 595-621. doi:10.1007/s10459-007-9090-2

Marrero, W., & Settle, A. (2005). Testing first: Emphasizing testing in early programming

courses. ACM SIGCSE Bulletin, 37(3), 4-8. doi:10.1145/1151954.1067451

Mezirow, J. (1990). Fostering critical reflection in adulthood. San Francisco, CA: Jossey-

Bass Publishers.

Mezirow, J. (1991). Transformative dimensions of adult learning. San Francisco, CA: Jossey-

Bass Publishers.

Muller, M. M., & Hagner, O. (2002). Experiment about test-first programming. Software, IEE

Proceedings, 149(5), 131-136. doi:10.1049/ip-sen:20020540

www.manaraa.com

79

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). New York, NY:

McGraw-Hill.

Piaget, J. (1928) Judgment and reasoning in the child (M. Warden, Trans.). London, England:

Routledge & Kegan Paul Ltd.

Redmond, B. (2006) Reflection in action: Developing reflective practice in health and

social services. Hampshire, England: Ashgate Publishing.

Reek, K. A. (1989). The TRY system – or – how to avoid testing student programs. ACM

SIGCSE Bulletin, 21(1), 112-116. doi:10.1145/65293.71198

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350-

353. doi:10.1037/1040-3590.8.4.350

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York,

NY: Basic Books.

Schön, D. A. (1987). Educating the reflective practitioner. San Francisco, CA: Jossey-

Bass Publishers.

Spacco, J. W. (2006). Marmoset: A programming project assignment framework to improve the

feedback cycle for students, faculty and researchers. (Doctoral dissertation). Retrieved

from ProQuest Dissertations and Theses database. (UMI No. 3241457)

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua-Perez, N.

(2006). Experiences with Marmoset. ACM SIGCSE Bulletin, 38(3), 13-17.

doi:10.1145/1140124.1140131

Spacco, J., & Pugh, W. (2006, October). Helping students appreciate test-driven

development (TDD). Paper presented at the 21st ACM SIGPLAN Symposium on

Object-Oriented Programming Systems, Languages, and Applications, Portland, OR.

www.manaraa.com

80

Skinner, B. F. (1935). Two types of conditioned reflex and a pseudo type. Journal of General

Psychology, 12(1), 66-77. doi:10.1080/00221309.1935.9920088

Thorndike, E. L. (1998). Animal intelligence: An experimental study of the associative processes

in animals. American Psychologist, 53(10), 1125-1127. doi:10.1037/0003-

066X.53.10.1125 (Original work published 1898)

University of West Florida. (2014). Facts & figures: 2013-2014 academic year. Retrieved from

http://uwf.edu/about/at-a-glance/facts--figures/

Wolsey, T. D. (2008). Efficacy of instructor feedback on written work in an online program.

International Journal on E-Learning, 7(2), 311-329. Retrieved from

http://www.aace.org/pubs/ijel/

www.manaraa.com

81

APPENDICES

www.manaraa.com

82

Appendix A

Institutional Review Board Approval Letters

www.manaraa.com

83

www.manaraa.com

84

www.manaraa.com

85

www.manaraa.com

86

Appendix B

Informed Consent Form

www.manaraa.com

87

INFORMED CONSENT

Title of Research: An Investigation of the Impact of Automated Software Testing on Reflective

Thinking and Student Performance in Introductory Computer Science
Programming Assignments

I. Federal and university regulations require us to obtain signed consent for participation in research

involving human participants. After reading the statements in section II through IV below, please
indicate your consent by signing and dating this form.

II. Statement of Procedure: Thank you for your interest in this research project being conducted by
the staff members of The University of West Florida. By this time, one of the investigators
should have described the procedures for you in detail. The purpose of this study is to investigate
the impact of automated software testing tools on student reflective thinking and performance.
You will find a summary of the major aspects of the study being described below, including the
risks and benefits of participating. Carefully read the information provided below. If you wish to
participate in this study, sign your name and write the date. Any information you provide to us
will be kept in strict confidence. If you have any questions or concerns regarding this project,
please contact Evorell Fridge in the Computer Science Department at The University of West
Florida at (850) 474-2046 or by email at efridge@uwf.edu.

I understand that:

1) My project grades for this class will be collected and used for data analysis.
2) I will be asked to complete a short demographic survey.
3) After the semester is over, I will be asked to complete a survey about my thinking in this

course.
4) I may be chosen to use an automated software-testing tool to help evaluate my computer

coding projects. This tool will only be offered on specific assignments, and I must still
submit my finished work using the method specified by my instructor.

5) I may discontinue participation in this study at any time without penalty.

III. Risks, Benefits, and Payments:

1) There are no physical risks associated with this study.
2) Participants in this study will have the option to be entered into a drawing to receive a $50

Wal-Mart gift card.

IV. Statement of Consent: I certify that I have read and fully understand the Statement of

Procedure given above and agree to participate research project described therein. Permission is
given voluntarily and without coercion or undue influence. It is understood that I may discontinue
participation at any time without penalty or loss of any benefits to which I may otherwise be
entitled. I will be provided a copy of this consent form.

 ___ _____________________________
Type/Print Participant's Name Date

Participant's Signature

www.manaraa.com

88

Appendix C

Demographic Survey

www.manaraa.com

89

1. Year in school:
a. Freshman
b. Sophomore
c. Junior
d. Senior
e. Graduate

2. Gender:

a. Male
b. Female

3. Is this the first Computer Science / programming class you have taken?

a. Yes
b. No

4. My Major is:

a. Computer Science
b. Another technology-related major
c. Other

5. State your official major (Computer Science, Information Technology, Engineering, Math,

Physics, etc.):

6. Age:

7. Email Address:

8. I wish to receive a copy of the results of this study.
a. Yes
b. No

www.manaraa.com

90

Appendix D

Reflective Thinking Survey

www.manaraa.com

91

UWF email address: ___________________________________

This is NOT a test. There are no 'right' or 'wrong' responses to the statements that follow. A response is
only 'right' if it reflects your personal reaction, and the strength of your reaction, as accurately as
possible. Please circle the appropriate letter to indicate your level of agreement with statements about
your actions and thinking in this course.

A—definitely agree
B—agree with reservation
C—only to be used if a definite answer is not possible
D—disagree with reservation
E—definitely disagree

	 Agree	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Disagree	
1)	 When	 I	 am	 working	 on	 some	 activities,	 I	 can	 do	 them	 without	
thinking	 about	 what	 I	 am	 doing	

A	 B	 C	 D	 E	

2)	 This	 course	 requires	 us	 to	 understand	 concepts	 taught	 by	 the	
lecturer	

A	 B	 C	 D	 E	

3)	 I	 sometimes	 question	 the	 way	 others	 do	 something	 and	 try	 to	 think	
of	 a	 better	 way	

A	 B	 C	 D	 E	

4)	 As	 a	 result	 of	 this	 course	 I	 have	 changed	 the	 way	 I	 look	 at	 myself	 A	 B	 C	 D	 E	
5)	 In	 this	 course	 we	 do	 things	 so	 many	 times	 that	 I	 started	 to	 do	 them	
without	 thinking	 about	 it	

A	 B	 C	 D	 E	

6)	 To	 pass	 this	 course	 you	 need	 to	 understand	 the	 content	 A	 B	 C	 D	 E	
7)	 I	 like	 to	 think	 over	 what	 I	 have	 been	 doing	 and	 consider	 alternative	
ways	 of	 doing	 it	

A	 B	 C	 D	 E	

8)	 This	 course	 has	 challenged	 some	 of	 my	 firmly	 held	 ideas	 A	 B	 C	 D	 E	
9)	 As	 long	 as	 I	 can	 remember	 handout	 material	 for	 examinations,	 I	 do	
not	 have	 to	 think	 too	 much	

A	 B	 C	 D	 E	

10)	 I	 need	 to	 understand	 the	 material	 taught	 by	 the	 lecturer	 in	 order	
to	 perform	 practical	 tasks	

A	 B	 C	 D	 E	

11)	 I	 often	 reflect	 on	 my	 actions	 to	 see	 whether	 I	 could	 have	 improved	
on	 what	 I	 did	

A	 B	 C	 D	 E	

12)	 As	 a	 result	 of	 this	 course	 I	 have	 changed	 my	 normal	 way	 of	 doing	
things	

A	 B	 C	 D	 E	

13)	 If	 I	 follow	 what	 the	 lecturer	 says,	 I	 do	 not	 have	 to	 think	 too	 much	
on	 this	 course	

A	 B	 C	 D	 E	

14)	 In	 this	 course	 you	 have	 to	 continually	 think	 about	 the	 material	 you	
are	 being	 taught	

A	 B	 C	 D	 E	

15)	 I	 often	 re-‐appraise	 my	 experience	 so	 I	 can	 learn	 from	 it	 and	
improve	 my	 next	 performance	

A	 B	 C	 D	 E	

16)	 During	 this	 course	 I	 discovered	 faults	 in	 what	 I	 had	 previously	
believed	 to	 be	 right	

A	 B	 C	 D	 E	

www.manaraa.com

92

UWF email address: ___________________________________

1) If you were asked to use the WebCat software for this study, which of these statements
reflects your level of participation?
a. I successfully used the software to evaluate my code

b. I tried to use the software but was unsuccessful

c. I did not attempt to use the WebCat software

2) If you were asked to use the WebCat software for this study, please rate how difficult it was to
do each of the following tasks using this scale:
A— Very easy
B— Somewhat Easy
C— Somewhat Difficult
D— Very Difficult
E— N/A (I did not attempt this action)

	 Easy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Difficult	
N/A	

Uploading	 code	 from	 within	 jGrasp	 A	 B	 C	 D	 E	
Uploading	 code	 directly	 on	 the	 website	 A	 B	 C	 D	 E	
Evaluating	 syntax	 results	 (dealing	 with	 code	 style,	
formatting,	 indention,	 etc.)	

A	 B	 C	 D	 E	

Evaluating	 test	 case	 results	 (dealing	 with	 function	
correctness,	 coverage,	 etc.)	

A	 B	 C	 D	 E	

3) Do you have any comments about the WebCat software or recommendations on how to
improve it?

www.manaraa.com

93

Appendix E

Sample Introductory Training Script

www.manaraa.com

94

1. Welcome
Thanks again for participating in this study, and for meeting me today. This is an
introduction to an automated software-testing tool that you will be using on your final
three projects of the semester. I hope you’ve brought your laptops so we can get you set
up. This entire process should only take about 20 minutes.

2. Introduction: What is Web-CAT?
Web-CAT is a tool developed by the computer science department at Virginia Tech. It
was designed to be an automated grading environment that students could submit their
code to and receive an instantaneous grade. However, for this class we will only be using
this tool for automated software testing. This means that you will be able to submit your
code to the tool electronically and instantly receive feedback about your software’s
performance. You will still, however, be required to submit your finished work using the
method specified by your instructor.

3. Demonstrate Web-CAT
a. Test with an error

i. Load jGrasp with sample project containing an error
ii. Submit code to Web-CAT

iii. Go to website and view results
b. Fix the error and re-test

i. Fix error in code and re-submit
ii. Go to website and view results (note that problem is fixed)

c. Student submitted test cases
i. Submit the same code with an extra student-written test

ii. Go to website and view results (note that new bug is found)

4. What’s going on here?
When I submit my code to Web-CAT, jGrasp is sending a copy of my code to a secure
server hosted here in the computer science department. The server compiles your code
and runs it against a series of test cases set up by your instructor. The server will then
show you a percentage score based on these tests, along with suggestions or hints that
will help you know what part of your code to improve. I will be providing you with a
handout that you can use to set up your copy of jGrasp to work with this tool.

You are also able to optionally submit your own test cases using the JUnit testing
framework. You will receive a handout with more information on how to set up these test
cases as well.

5. Any questions?

6. Distribute handouts and set up laptops

www.manaraa.com

95

Appendix F

Web-CAT Setup Handout

www.manaraa.com

96

Setting up and using Web-CAT within jGrasp

Web-CAT is an automated software-testing tool. Support for Web-CAT is built into jGrasp
version 1.8.8 or later. You may want to check your version if you have an older copy, but if you
have just downloaded jGrasp and installed it this semester you should be fine.

1. To configure jGrasp to work with Web-CAT, start by going to Tools > Web-CAT >

Configure.

2. We now need to tell jGrasp the URL it needs to use to talk to Web-CAT. Enter the following

URL into the field shown below.

3. Once the path has been entered, your configuration should be complete. You can test this by
opening a .java file and going to Tools > Web-CAT > Submit File.

4. You will then be asked to select the assignment that you are submitting for.

5. The next dialog box asks which files you will be submitting. You will need to submit all

files needed to compile and run your project, along with any optional test cases that you have
written.

www.manaraa.com

97

6. You will then be asked to provide your login to the Web-CAT system.

7. Your results will be displayed in your web browser once the system has finished testing your

work. Please pay special attention to the “Estimate of Problem Coverage” section. This will
show the percentage of test cases that passed, as well as any hints that may help you improve
your work.

